Electro-mechanical coupling directs endothelial activities through intracellular calcium ion deployment†

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Changhao Li, Peng Yu, Zhengao Wang, Cheng Long, Cairong Xiao, Jun Xing, Binbin Dong, Jinxia Zhai, Lei Zhou, Zhengnan Zhou, Yan Wang, Wenjun Zhu, Guoxin Tan, Chengyun Ning, Yahong Zhou and Chuanbin Mao
{"title":"Electro-mechanical coupling directs endothelial activities through intracellular calcium ion deployment†","authors":"Changhao Li, Peng Yu, Zhengao Wang, Cheng Long, Cairong Xiao, Jun Xing, Binbin Dong, Jinxia Zhai, Lei Zhou, Zhengnan Zhou, Yan Wang, Wenjun Zhu, Guoxin Tan, Chengyun Ning, Yahong Zhou and Chuanbin Mao","doi":"10.1039/D3MH01049J","DOIUrl":null,"url":null,"abstract":"<p >Conversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field (<em>E</em><small><sub>ex</sub></small>) triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate <em>E</em><small><sub>ex</sub></small> (confined at the cellular scale) to polarize intracellular calcium ions ([Ca<small><sup>2+</sup></small>]<small><sub>i</sub></small>), forming a built-in electric field (<em>E</em><small><sub>in</sub></small>) opposing <em>E</em><small><sub>ex</sub></small>. Furthermore, the [Ca<small><sup>2+</sup></small>]<small><sub>i</sub></small> polarization stimulates HUVECs to shrink their cytoskeletons, activating Piezo1 channels to induce influx of extracellular Ca<small><sup>2+</sup></small> that gradually increases <em>E</em><small><sub>in</sub></small> to balance <em>E</em><small><sub>ex</sub></small>. Such an electro-mechanical coupling feedback loop directs pre-angiogenic activities such as alignment, elongation, and migration of HUVECs. Activated calcium dynamics during the coupling further modulate the downstream angiogenesis-inducing eNOS/NO pathway. These findings lay a foundation for developing new ways of electrical stimulation-based disease treatment.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 4903-4913"},"PeriodicalIF":12.2000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh01049j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field (Eex) triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate Eex (confined at the cellular scale) to polarize intracellular calcium ions ([Ca2+]i), forming a built-in electric field (Ein) opposing Eex. Furthermore, the [Ca2+]i polarization stimulates HUVECs to shrink their cytoskeletons, activating Piezo1 channels to induce influx of extracellular Ca2+ that gradually increases Ein to balance Eex. Such an electro-mechanical coupling feedback loop directs pre-angiogenic activities such as alignment, elongation, and migration of HUVECs. Activated calcium dynamics during the coupling further modulate the downstream angiogenesis-inducing eNOS/NO pathway. These findings lay a foundation for developing new ways of electrical stimulation-based disease treatment.

Abstract Image

机电耦合通过细胞内钙离子的部署来指导内皮活动。
在细胞中,机械和电信号之间的转换通常被认为是单向的,心肌细胞是一个例外。在这里,我们发现材料诱导的外部电场(Eex)通过打开心肌细胞、人脐静脉内皮细胞(HUVECs)的机械敏感Piezo1通道,在心肌细胞以外的细胞中触发机电耦合反馈回路。当HUVECs在图案化的压电材料上培养时,材料产生Eex(限制在细胞尺度上)以极化细胞内钙离子([Ca2+]i),形成与Eex相对的内置电场(Ein)。此外,[Ca2+]i极化刺激HUVECs收缩其细胞骨架,激活Piezo1通道以诱导细胞外Ca2+的流入,从而逐渐增加Ein以平衡Eex。这种机电耦合反馈回路指导血管生成前的活动,例如HUVECs的排列、延伸和迁移。偶联过程中激活的钙动力学进一步调节下游血管生成诱导eNOS/NO途径。这些发现为开发基于电刺激的疾病治疗新方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信