Unleashing the Full Potential of Electrochromic Heterostructured Nickel-Cobalt Phosphate for Optically Active High-Performance Asymmetric Quasi-Solid-State Supercapacitor Devices.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-26 Epub Date: 2023-09-29 DOI:10.1021/acsami.3c11494
Loujain G Ghanem, Manar M Taha, Basamat S Shaheen, Nageh K Allam
{"title":"Unleashing the Full Potential of Electrochromic Heterostructured Nickel-Cobalt Phosphate for Optically Active High-Performance Asymmetric Quasi-Solid-State Supercapacitor Devices.","authors":"Loujain G Ghanem, Manar M Taha, Basamat S Shaheen, Nageh K Allam","doi":"10.1021/acsami.3c11494","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of hybrid systems that combine capacitor and battery merits is crucial to enable the fabrication of high energy and power density devices. However, the development of such systems remains a significant barrier to overcome. Herein, we report the design of a Ni-Co phosphate (Ni<sub>3-<i>x</i></sub>Co<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O) nanoplatelet-based system via a facile coprecipitation method at ambient conditions. The nanoplatelets exhibit multicomponent synergy, exceptional charge storage capabilities, rich redox active sites (ameliorating the redox reaction activity), and high ionic diffusion rate/electron transfer kinetics. The designed Ni<sub>3-<i>x</i></sub>Co<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O offered a respectable gravimetric specific capacity and marvelous capability rate (966 and 595 C g<sup>-1</sup> at 1 and 15 A g<sup>-1</sup>) over the Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O (327.3 C g<sup>-1</sup>) and Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O (68 C g<sup>-1</sup>) counterparts. Additionally, the nanoplatelets showed enhanced photoactive storage performance with a 9.7% increase in the recorded photocurrent density. Upon integration of Ni<sub>3-<i>x</i></sub>Co<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O as a positive pole and commercial activated carbon as a negative pole, the constructed hybrid supercapacitor device with PVA@KOH quasi-gel electrolyte exhibits great energy and power densities of 77.7 Wh kg<sup>-1</sup> and 15998.54 W kg<sup>-1</sup> with remarkable cycling stability of 6000 charging/discharging cycles and prominent Coulombic efficiency of 100%. Interestingly, two assembled devices are capable of glowing a red LED bulb for nearly 180 s. This research paves the way to design and fabricate electroactive species via a facile approach for boosting the design of a plethora of supercapattery devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"17657-17671"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.3c11494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of hybrid systems that combine capacitor and battery merits is crucial to enable the fabrication of high energy and power density devices. However, the development of such systems remains a significant barrier to overcome. Herein, we report the design of a Ni-Co phosphate (Ni3-xCox(PO4)2·8H2O) nanoplatelet-based system via a facile coprecipitation method at ambient conditions. The nanoplatelets exhibit multicomponent synergy, exceptional charge storage capabilities, rich redox active sites (ameliorating the redox reaction activity), and high ionic diffusion rate/electron transfer kinetics. The designed Ni3-xCox(PO4)2·8H2O offered a respectable gravimetric specific capacity and marvelous capability rate (966 and 595 C g-1 at 1 and 15 A g-1) over the Ni3(PO4)2·8H2O (327.3 C g-1) and Co3(PO4)2·8H2O (68 C g-1) counterparts. Additionally, the nanoplatelets showed enhanced photoactive storage performance with a 9.7% increase in the recorded photocurrent density. Upon integration of Ni3-xCox(PO4)2·8H2O as a positive pole and commercial activated carbon as a negative pole, the constructed hybrid supercapacitor device with PVA@KOH quasi-gel electrolyte exhibits great energy and power densities of 77.7 Wh kg-1 and 15998.54 W kg-1 with remarkable cycling stability of 6000 charging/discharging cycles and prominent Coulombic efficiency of 100%. Interestingly, two assembled devices are capable of glowing a red LED bulb for nearly 180 s. This research paves the way to design and fabricate electroactive species via a facile approach for boosting the design of a plethora of supercapattery devices.

为光学活性高性能不对称准固态超级电容器器件释放电致变色异质结构磷酸镍钴的全部潜力。
将电容器和电池优点相结合的混合系统的合理设计对于制造高能量和功率密度器件至关重要。然而,这类系统的发展仍然是一个需要克服的重大障碍。在此,我们报道了在环境条件下通过简单的共沉淀方法设计的基于Ni-Co磷酸盐(Ni3-xCox(PO4)2·8H2O)纳米片体系。纳米片表现出多组分协同作用、优异的电荷存储能力、丰富的氧化还原活性位点(改善氧化还原反应活性)和高离子扩散速率/电子转移动力学。与Ni3(PO4)2·8H2O(327.3Cg-1)和Co3(PO3)2·8 H2O(68Cg-1。此外,纳米片显示出增强的光活性存储性能,记录的光电流密度增加了9.7%。在将Ni3-xCox(PO4)2·8H2O作为正极和商用活性炭作为负极的基础上,构建了具有PVA@KOH准凝胶电解质表现出77.7 Wh kg-1和15998.54 W kg-1的高能量和功率密度,具有6000次充放电循环的显著循环稳定性和100%的显著库仑效率。有趣的是,两个组装好的器件能够让一个红色LED灯泡发光近180秒。这项研究为通过一种简单的方法来设计和制造电活性物质铺平了道路,以促进过多超级图案器件的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信