Application of Machine Learning for the Analysis of Higgs Boson Production in Association with Single Top-Quark

IF 0.4 Q4 PHYSICS, PARTICLES & FIELDS
A. R. Didenko
{"title":"Application of Machine Learning for the Analysis of Higgs Boson Production in Association with Single Top-Quark","authors":"A. R. Didenko","doi":"10.1134/S1547477123050229","DOIUrl":null,"url":null,"abstract":"<p>This work describes results of application of a neural network for the classification of the Higgs boson in association with a single top quark signal production <span>\\(pp \\to tH\\)</span> and the main background processes <span>\\(pp \\to tt,ttH,ttW,ttZ\\)</span> production at the LHC in the ATLAS experiment. The tH channel is sensitive to the sign of the tH-coupling unlike the ttH. Also, an accurate measurement of the Higgs-top coupling is sensitive to the Beyond the Standard Model physics [1, 2].</p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"20 5","pages":"1169 - 1172"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1547477123050229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes results of application of a neural network for the classification of the Higgs boson in association with a single top quark signal production \(pp \to tH\) and the main background processes \(pp \to tt,ttH,ttW,ttZ\) production at the LHC in the ATLAS experiment. The tH channel is sensitive to the sign of the tH-coupling unlike the ttH. Also, an accurate measurement of the Higgs-top coupling is sensitive to the Beyond the Standard Model physics [1, 2].

Abstract Image

机器学习在分析与单顶夸克相关的希格斯玻色子产生中的应用
这项工作描述了应用神经网络对希格斯玻色子进行分类的结果,该分类与ATLAS实验中LHC产生的单个顶夸克信号(pp\tH\)和主要背景过程(pp\tt,ttH,ttW,ttZ\)有关。与ttH不同,tH通道对tH耦合的符号敏感。此外,对希格斯顶部耦合的精确测量对超越标准模型物理学是敏感的[1,2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Particles and Nuclei Letters
Physics of Particles and Nuclei Letters PHYSICS, PARTICLES & FIELDS-
CiteScore
0.80
自引率
20.00%
发文量
108
期刊介绍: The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信