Copper nanowires decorated with TiO2−x from MXene for enhanced electrocatalytic nitrogen oxidation into nitrate under vacuum assistance

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Quan Li, Zhengting Xiao, Weina Jia, Qin Li, Xianguo Li, Wentai Wang
{"title":"Copper nanowires decorated with TiO2−x from MXene for enhanced electrocatalytic nitrogen oxidation into nitrate under vacuum assistance","authors":"Quan Li,&nbsp;Zhengting Xiao,&nbsp;Weina Jia,&nbsp;Qin Li,&nbsp;Xianguo Li,&nbsp;Wentai Wang","doi":"10.1007/s12274-023-6126-8","DOIUrl":null,"url":null,"abstract":"<div><p>The green synthesis of nitrate (NO<sub>3</sub><sup>−</sup>) via electrocatalytic nitrogen oxidation reaction (NOR) is a promising strategy for artificial nitrogen fixation, which shows great advantages than traditional nitrate synthesis based on Haber–Bosch and Ostwald processes. But the poor N<sub>2</sub> absorption, high bond energy of N≡N (941 kJ·mol<sup>−1</sup>), and competing multi-electron-transfer oxygen evolution reaction (OER) limit the activity and selectivity. Herein, we fabricated MXene-derived irregular TiO<sub>2−<i>x</i></sub> nanoparticles anchored Cu nanowires (Cu-NWs) electrode for efficient electrocatalytic nitrogen oxidation, which exhibits a NO<sub>3</sub><sup>−</sup> yield of 62.50μ<sub>g</sub>·h<sup>−1</sup>·mg<sub>cat</sub><sup>−1</sup> and a Faradaic efficiency (FE) of 22.04%, and a significantly enhanced NO<sub>3</sub><sup>−</sup> yield of 92.63 μ<sub>g</sub>·h<sup>−1</sup>·mg<sub>cat</sub><sup>−1</sup>, and a FE of 40.58% under vacuum assistance. The TiO<sub>2−<i>x</i></sub>/Cu-NWs electrode also shows excellent reproducibility and stability under optimal experimental conditions. Moreover, a Zn-N<sub>2</sub> reaction device was assembled with TiO<sub>2−<i>x</i></sub>/Cu-NWs as an anode and Zn plate as a cathode, obtaining an extremely high NO<sub>3</sub><sup>−</sup> yield of 156.25 μ<sub>g</sub>·h<sup>−1</sup>·mg<sub>cat</sub><sup>−1</sup>. The Zn-nitrate battery shows an open circuit voltage (OCV) of 1.35 V. This work provides novel strategies for enhancing the performance of ambient N<sub>2</sub> oxidation to obtain higher NO<sub>3</sub><sup>−</sup> yield.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"16 10","pages":"12357 - 12362"},"PeriodicalIF":9.5000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-023-6126-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The green synthesis of nitrate (NO3) via electrocatalytic nitrogen oxidation reaction (NOR) is a promising strategy for artificial nitrogen fixation, which shows great advantages than traditional nitrate synthesis based on Haber–Bosch and Ostwald processes. But the poor N2 absorption, high bond energy of N≡N (941 kJ·mol−1), and competing multi-electron-transfer oxygen evolution reaction (OER) limit the activity and selectivity. Herein, we fabricated MXene-derived irregular TiO2−x nanoparticles anchored Cu nanowires (Cu-NWs) electrode for efficient electrocatalytic nitrogen oxidation, which exhibits a NO3 yield of 62.50μg·h−1·mgcat−1 and a Faradaic efficiency (FE) of 22.04%, and a significantly enhanced NO3 yield of 92.63 μg·h−1·mgcat−1, and a FE of 40.58% under vacuum assistance. The TiO2−x/Cu-NWs electrode also shows excellent reproducibility and stability under optimal experimental conditions. Moreover, a Zn-N2 reaction device was assembled with TiO2−x/Cu-NWs as an anode and Zn plate as a cathode, obtaining an extremely high NO3 yield of 156.25 μg·h−1·mgcat−1. The Zn-nitrate battery shows an open circuit voltage (OCV) of 1.35 V. This work provides novel strategies for enhancing the performance of ambient N2 oxidation to obtain higher NO3 yield.

MXene中TiO2−x修饰的铜纳米线在真空辅助下增强电催化氮氧化成硝酸盐
通过电催化氮氧化反应(NOR)绿色合成硝酸盐(NO3−)是一种很有前途的人工固氮策略,与传统的基于Haber–Bosch和Ostwald工艺的硝酸盐合成相比具有很大的优势。但N2吸收能力差、N≠N键能高(941kJ·mol−1)以及竞争性多电子转移析氧反应(OER)限制了活性和选择性。在此,我们制备了MXene衍生的不规则TiO2−x纳米颗粒锚定的Cu纳米线(Cu NWs)电极,用于有效的电催化氮氧化,其NO3−产率为62.50μg·h−1·mgcat−1,法拉第效率(FE)为22.04%,在真空辅助下NO3−收率显著提高,为92.63μg·小时−1·mg cat−1。TiO2−x/Cu NWs电极在最佳实验条件下也表现出优异的再现性和稳定性。此外,以TiO2−x/Cu NWs为阳极,Zn板为阴极,组装了Zn-N2反应装置,获得了156.25μg·h−1·mgcat−1的极高NO3−产率。硝酸锌电池的开路电压(OCV)为1.35V。这项工作为提高环境N2氧化性能以获得更高的NO3−产率提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信