Ying Song, Naiji Yang, Hui Li*, Wenjun Wang and Xiaolong Chen*,
{"title":"Micropipe-Like Defects in the Expanded Diameter Region of 8 in. SiC Grown by Physical Vapor Transport","authors":"Ying Song, Naiji Yang, Hui Li*, Wenjun Wang and Xiaolong Chen*, ","doi":"10.1021/acs.cgd.3c00850","DOIUrl":null,"url":null,"abstract":"<p >This study presents the growth of 8 in. silicon carbide (SiC) single crystals using a multiple-expanding diameter growth process via the physical vapor transport technique, with commercial 6 in. n-type SiC of 4° off-axis toward [11<span>2</span><span>̅</span>0] as the seed. Micropipe-like defects were observed in the expanded diameter region, whereas they are absent in the unexpanded diameter region grown on the SiC seed via step-flow growth mode. Optical microscopy, scanning electron microscopy, micro-Raman spectroscopy, laser scanning confocal microscopy, defect-tracking experiments, and energy-dispersive spectroscopy were employed to investigate the morphology, polytype, and formation mechanism of the defects. The micropipe-like defects, with diameters in the dozens of micrometers scale and an angle ∼50° relative to the [000<span>1</span><span>̅</span>] direction, were found to stem from carbon particles decomposed from SiC powders. No other polytype inclusions were observed in these defects. By applying sintered SiC powders as starting materials, micropipe-like defects were effectively reduced. Our results provide an efficient method for growing large-size SiC single crystals of high-quality and low-defect density via the multiple-expanding diameter growth process.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"23 10","pages":"7440–7447"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00850","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the growth of 8 in. silicon carbide (SiC) single crystals using a multiple-expanding diameter growth process via the physical vapor transport technique, with commercial 6 in. n-type SiC of 4° off-axis toward [112̅0] as the seed. Micropipe-like defects were observed in the expanded diameter region, whereas they are absent in the unexpanded diameter region grown on the SiC seed via step-flow growth mode. Optical microscopy, scanning electron microscopy, micro-Raman spectroscopy, laser scanning confocal microscopy, defect-tracking experiments, and energy-dispersive spectroscopy were employed to investigate the morphology, polytype, and formation mechanism of the defects. The micropipe-like defects, with diameters in the dozens of micrometers scale and an angle ∼50° relative to the [0001̅] direction, were found to stem from carbon particles decomposed from SiC powders. No other polytype inclusions were observed in these defects. By applying sintered SiC powders as starting materials, micropipe-like defects were effectively reduced. Our results provide an efficient method for growing large-size SiC single crystals of high-quality and low-defect density via the multiple-expanding diameter growth process.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.