{"title":"Simple Algorithm for Computing the Value of the Critical Temperature of Magnetic Nanoparticles with High Accuracy Using Simulation Methods","authors":"Mehrdad Ghaemi, Somayeh Hemmati","doi":"10.1007/s10948-023-06607-3","DOIUrl":null,"url":null,"abstract":"<div><p>A new method is developed for a more accurate computing of the value of the critical point for magnetic nanoparticles using the cellular automata simulation method. In traditional methods, the transition between positive and negative magnetization before the critical temperature results in erroneous computation of the critical point. Our method is based on the count of the states in the graph of magnetization versus time, in which the absolute value of magnetization per site is bigger than a threshold value <i>m</i><sub><i>t</i></sub>. If the number of these states is more than 70% of the simulation time, the temperature of the system is below the Curie temperature; otherwise, the temperature is greater than the Curie temperature. According to the obtained results, it seems that this method is suitable for a better estimation of the value of the critical temperature.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 7-9","pages":"1665 - 1672"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06607-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A new method is developed for a more accurate computing of the value of the critical point for magnetic nanoparticles using the cellular automata simulation method. In traditional methods, the transition between positive and negative magnetization before the critical temperature results in erroneous computation of the critical point. Our method is based on the count of the states in the graph of magnetization versus time, in which the absolute value of magnetization per site is bigger than a threshold value mt. If the number of these states is more than 70% of the simulation time, the temperature of the system is below the Curie temperature; otherwise, the temperature is greater than the Curie temperature. According to the obtained results, it seems that this method is suitable for a better estimation of the value of the critical temperature.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.