{"title":"Relativistic Quantum Effects on Scalar Bosons in Morris–Thorne-Type Wormhole Space-Time with a Cosmic String","authors":"Faizuddin Ahmed","doi":"10.1007/s00601-023-01860-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the relativistic quantum motion of spin-0 scalar bosons within the framework of Morris–Thorne-type wormhole space-time accompanied by a cosmic string is studied. We tackle the problem by solving the relativistic Klein–Gordon equation using the confluent Heun equation. We determine the ground state energy level, denoted as <span>\\(E_{1,m}\\)</span>, as well as the corresponding wave function, denoted as <span>\\(\\psi _{1,m}\\)</span>. Interestingly, the investigation reveals that both the cosmic string parameter and the wormhole throat radius have an impact on the relativistic eigenvalue solution, thereby modifying the energy spectrum. Furthermore, the presence of the quantum flux field induces a shift in the energy levels, leading to the gravitational analogue of the Aharonov–Bohm effect.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"64 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01860-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the relativistic quantum motion of spin-0 scalar bosons within the framework of Morris–Thorne-type wormhole space-time accompanied by a cosmic string is studied. We tackle the problem by solving the relativistic Klein–Gordon equation using the confluent Heun equation. We determine the ground state energy level, denoted as \(E_{1,m}\), as well as the corresponding wave function, denoted as \(\psi _{1,m}\). Interestingly, the investigation reveals that both the cosmic string parameter and the wormhole throat radius have an impact on the relativistic eigenvalue solution, thereby modifying the energy spectrum. Furthermore, the presence of the quantum flux field induces a shift in the energy levels, leading to the gravitational analogue of the Aharonov–Bohm effect.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).