Formation and structural characteristics of pea globulin amyloid-like fibrils pretreated with low-frequency magnetic field

IF 11 1区 农林科学 Q1 CHEMISTRY, APPLIED
Qing-Qing Liu , Qin Yang , Ya-Ru Wang , Yi-Xuan Jiang , Han-Qing Chen
{"title":"Formation and structural characteristics of pea globulin amyloid-like fibrils pretreated with low-frequency magnetic field","authors":"Qing-Qing Liu ,&nbsp;Qin Yang ,&nbsp;Ya-Ru Wang ,&nbsp;Yi-Xuan Jiang ,&nbsp;Han-Qing Chen","doi":"10.1016/j.foodhyd.2023.109331","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effect of low-frequency magnetic field (LF-MF) on the formation and structural characteristics of pea globulin (PG) amyloid-like fibrils were investigated. The results showed that the structure of PG unfolded after LF-MF pretreatment. And PG pretreated with LF-MF (MPG) exhibited higher thioflavin T fluorescence intensity during the fibrillation compared with native PG (NPG), indicating that LF-MF could enhance the ability of PG to form amyloid-like fibrils. During the fibrillation process, the PG was hydrolyzed into small peptides in the initial stage of heating, leading to decreased particle size, as evidenced by the degraded subunits. The average particle size then increased with the small peptides aggregating, and the ordered amyloid-like fibrils with high content of β-sheets were formed. But the fibrils generated by MPG were larger in size and had a higher content of β-sheets. The formation of PG amyloid-like fibrils was confirmed by AFM images, and LF-MF pretreatment resulted in the generation of longer and thicker PG fibrils. The results of surface hydrophobicity showed that the hydrophobic interactions played an important role in the fibrillation process of PG. This work may provide a deep understanding about the effect of LF-MF on the assembly behavior and structural characteristics of PG amyloid-like fibrils.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109331"},"PeriodicalIF":11.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23008779","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the effect of low-frequency magnetic field (LF-MF) on the formation and structural characteristics of pea globulin (PG) amyloid-like fibrils were investigated. The results showed that the structure of PG unfolded after LF-MF pretreatment. And PG pretreated with LF-MF (MPG) exhibited higher thioflavin T fluorescence intensity during the fibrillation compared with native PG (NPG), indicating that LF-MF could enhance the ability of PG to form amyloid-like fibrils. During the fibrillation process, the PG was hydrolyzed into small peptides in the initial stage of heating, leading to decreased particle size, as evidenced by the degraded subunits. The average particle size then increased with the small peptides aggregating, and the ordered amyloid-like fibrils with high content of β-sheets were formed. But the fibrils generated by MPG were larger in size and had a higher content of β-sheets. The formation of PG amyloid-like fibrils was confirmed by AFM images, and LF-MF pretreatment resulted in the generation of longer and thicker PG fibrils. The results of surface hydrophobicity showed that the hydrophobic interactions played an important role in the fibrillation process of PG. This work may provide a deep understanding about the effect of LF-MF on the assembly behavior and structural characteristics of PG amyloid-like fibrils.

Abstract Image

低频磁场预处理豌豆球蛋白淀粉样纤维的形成及结构特征
本研究研究了低频磁场(LF-MF)对豌豆球蛋白(PG)淀粉样原纤维形成和结构特征的影响。结果表明,经LF-MF预处理后PG的结构发生了折叠。与天然PG(NPG)相比,LF-MF(MPG)预处理的PG在纤颤过程中表现出更高的硫黄素T荧光强度,表明LF-MF可以增强PG形成淀粉样原纤维的能力。在原纤化过程中,PG在加热的初始阶段被水解成小肽,导致颗粒尺寸减小,降解的亚基证明了这一点。随着小肽的聚集,平均粒径增加,形成了具有高β-片含量的有序淀粉样原纤维。但MPG产生的原纤维尺寸较大,β-片含量较高。AFM图像证实了PG淀粉样原纤维的形成,LF-MF预处理导致生成更长、更厚的PG原纤维。表面疏水性的研究结果表明,疏水相互作用在PG的原纤化过程中起着重要作用。这项工作可以深入了解LF-MF对PG淀粉样原纤维组装行为和结构特征的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Hydrocolloids
Food Hydrocolloids 工程技术-食品科技
CiteScore
19.90
自引率
14.00%
发文量
871
审稿时长
37 days
期刊介绍: Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication. The main areas of interest are: -Chemical and physicochemical characterisation Thermal properties including glass transitions and conformational changes- Rheological properties including viscosity, viscoelastic properties and gelation behaviour- The influence on organoleptic properties- Interfacial properties including stabilisation of dispersions, emulsions and foams- Film forming properties with application to edible films and active packaging- Encapsulation and controlled release of active compounds- The influence on health including their role as dietary fibre- Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes- New hydrocolloids and hydrocolloid sources of commercial potential. The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信