Laser Promoting Oxygen Vacancies Generation in Alloy via Mo for HMF Electrochemical Oxidation

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junbo Liu, Shengyang Tao
{"title":"Laser Promoting Oxygen Vacancies Generation in Alloy via Mo for HMF Electrochemical Oxidation","authors":"Junbo Liu,&nbsp;Shengyang Tao","doi":"10.1002/advs.202302641","DOIUrl":null,"url":null,"abstract":"<p>It is well known that nickel-based catalysts have high electrocatalytic activity for the 5-hydroxymethylfurfural oxidation reaction (HMFOR), and NiOOH is the main active component. However, the price of nickel and the catalyst's lifetime still need to be solved. In this work, NiOOH containing oxygen vacancies is formed on the surface of Ni alloy by UV laser (1J85-laser). X-ray absorption fine structure (XAFS) analyses indicate an interaction between Mo and Ni, which affects the coordination environment of Ni with oxygen. The chemical valence of Ni is between 0 and 2, indicating the generation of oxygen vacancies. Density functional theory (DFT) suggests that Mo can increase the defect energy and form more oxygen vacancies. In situ Raman electrochemical spectroscopy shows that Mo can promote the formation of NiOOH, thus enhancing the HMFOR activity. The 1J85-laser electrode shows a longer electrocatalytic lifetime than Ni-laser. After 15 cycles, the conversion of HMF is 95.92%.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"10 27","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202302641","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202302641","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that nickel-based catalysts have high electrocatalytic activity for the 5-hydroxymethylfurfural oxidation reaction (HMFOR), and NiOOH is the main active component. However, the price of nickel and the catalyst's lifetime still need to be solved. In this work, NiOOH containing oxygen vacancies is formed on the surface of Ni alloy by UV laser (1J85-laser). X-ray absorption fine structure (XAFS) analyses indicate an interaction between Mo and Ni, which affects the coordination environment of Ni with oxygen. The chemical valence of Ni is between 0 and 2, indicating the generation of oxygen vacancies. Density functional theory (DFT) suggests that Mo can increase the defect energy and form more oxygen vacancies. In situ Raman electrochemical spectroscopy shows that Mo can promote the formation of NiOOH, thus enhancing the HMFOR activity. The 1J85-laser electrode shows a longer electrocatalytic lifetime than Ni-laser. After 15 cycles, the conversion of HMF is 95.92%.

Abstract Image

激光通过Mo促进HMF电化学氧化合金中氧空位的产生
众所周知,镍基催化剂对5-羟甲基糠醛氧化反应(HMFOR)具有较高的电催化活性,其中NiOOH是主要的活性成分。然而,镍的价格和催化剂的寿命仍然需要解决。本文用紫外激光(1J85激光)在镍合金表面形成了含氧空位的NiOOH。X射线吸收精细结构(XAFS)分析表明,Mo和Ni之间存在相互作用,这影响了Ni与氧的配位环境。Ni的化学价在0和2之间,表明产生了氧空位。密度泛函理论(DFT)表明,Mo可以增加缺陷能量,形成更多的氧空位。原位拉曼电化学光谱表明,Mo可以促进NiOOH的形成,从而提高HMFOR的活性。1J85激光电极显示出比Ni激光更长的电催化寿命。经过15次循环后,HMF的转化率为95.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信