{"title":"Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming","authors":"Monika Kopec, Karolina Beton-Mysur, Halina Abramczyk","doi":"10.1016/j.chemphyslip.2023.105339","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm<sup>−1</sup>, 2845 cm<sup>−1</sup>, 2936 cm<sup>−1</sup>, 1444 cm<sup>−1</sup>, 750 cm<sup>−1</sup>, 1126 cm<sup>−1</sup>, 1584 cm<sup>−1</sup>, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm<sup>−1</sup>, 2845 cm<sup>−1</sup>, 1444 cm<sup>−1</sup>, and 1126 cm<sup>−1</sup> in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides <em>de novo</em> synthesis, reduced levels of cholesterol and cytochrome <em>c</em> in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105339"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308423000610","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm−1, 2845 cm−1, 2936 cm−1, 1444 cm−1, 750 cm−1, 1126 cm−1, 1584 cm−1, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm−1, 2845 cm−1, 1444 cm−1, and 1126 cm−1 in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.