Potential of Antarctic lipase from Acinetobacter johnsonii Ant12 for treatment of lipid-rich wastewater: screening, production, properties and applications

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vijay D. Nimkande, Kannan Krishnamurthi, Amit Bafana
{"title":"Potential of Antarctic lipase from Acinetobacter johnsonii Ant12 for treatment of lipid-rich wastewater: screening, production, properties and applications","authors":"Vijay D. Nimkande,&nbsp;Kannan Krishnamurthi,&nbsp;Amit Bafana","doi":"10.1007/s10532-023-10041-6","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aimed to screen and optimize lipase production by the Antarctic strain <i>Acinetobacter johnsonii</i> Ant12 for lipid-rich wastewater treatment. Lipase production was successfully enhanced threefold through optimization of culture conditions. The optimum crude lipase activity was observed at 50 °C with high stability in a wide temperature range. The lipase also exhibited high activity and stability in the presence of solvents, metal ions, and surfactants. The crude lipase was used for the treatment of lipid-rich wastewater, which poses a significant challenge, as traditional removal methods are often inefficient or non-eco-friendly. In this study, bioaugmentation with Ant12 resulted in substantial lipid reduction in synthetic as well as real-world wastewater. Multiple linear regression analysis showed that lipid concentration and time were the most significant factors influencing lipid degradation. Bioaugmentation of real-world wastewater with Ant12 cells resulted in 84% removal of lipids in 72 h, while its crude lipase degraded 73.7% of lipids after 24 h. Thus, the specific rate of lipid degradation was higher for crude lipase (0.095/h) than the whole cell treatment (0.031/h). Economic analysis revealed that crude lipase production was much cheaper, faster and more eco-friendly than purified or partially purified lipase production, which justifies its use in wastewater treatment. The high activity of enzyme also implicates its application as a detergent additive. In our knowledge, it is the first study to establish <i>A. johnsonii</i> isolate from Antarctica for lipid-rich wastewater treatment.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"549 - 566"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10041-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed to screen and optimize lipase production by the Antarctic strain Acinetobacter johnsonii Ant12 for lipid-rich wastewater treatment. Lipase production was successfully enhanced threefold through optimization of culture conditions. The optimum crude lipase activity was observed at 50 °C with high stability in a wide temperature range. The lipase also exhibited high activity and stability in the presence of solvents, metal ions, and surfactants. The crude lipase was used for the treatment of lipid-rich wastewater, which poses a significant challenge, as traditional removal methods are often inefficient or non-eco-friendly. In this study, bioaugmentation with Ant12 resulted in substantial lipid reduction in synthetic as well as real-world wastewater. Multiple linear regression analysis showed that lipid concentration and time were the most significant factors influencing lipid degradation. Bioaugmentation of real-world wastewater with Ant12 cells resulted in 84% removal of lipids in 72 h, while its crude lipase degraded 73.7% of lipids after 24 h. Thus, the specific rate of lipid degradation was higher for crude lipase (0.095/h) than the whole cell treatment (0.031/h). Economic analysis revealed that crude lipase production was much cheaper, faster and more eco-friendly than purified or partially purified lipase production, which justifies its use in wastewater treatment. The high activity of enzyme also implicates its application as a detergent additive. In our knowledge, it is the first study to establish A. johnsonii isolate from Antarctica for lipid-rich wastewater treatment.

Abstract Image

约翰不动杆菌Ant12南极脂肪酶处理高脂废水的潜力:筛选、生产、性质和应用
本研究旨在筛选和优化南极约翰不动杆菌Ant12菌株的脂肪酶生产,用于处理富含油脂的废水。通过优化培养条件,脂肪酶的产量成功地提高了三倍。最佳粗脂肪酶活性在50°C下观察到,在宽温度范围内具有高稳定性。脂肪酶在溶剂、金属离子和表面活性剂的存在下也表现出高活性和稳定性。粗脂肪酶用于处理富含油脂的废水,这是一个重大的挑战,因为传统的去除方法往往效率低下或不环保。在这项研究中,Ant12的生物强化作用显著降低了合成废水和真实废水中的脂质。多元线性回归分析表明,脂质浓度和时间是影响脂质降解的最显著因素。Ant12细胞对真实废水的生物强化在72小时内去除了84%的脂质,而其粗脂肪酶在24小时后降解了73.7%的脂质。因此,粗脂肪酶的比降解率(0.095/h)高于全细胞处理(0.031/h)。经济分析表明,粗脂肪酶生产比纯化或部分纯化脂肪酶生产更便宜、更快、更环保,这证明了其在废水处理中的应用是合理的。酶的高活性也意味着它作为洗涤剂添加剂的应用。据我们所知,这是首次从南极洲建立用于富含脂质的废水处理的A.johnsonii分离物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信