Acidovorax PSJ13, a novel, efficient polyacrylamide-degrading bacterium by cleaving the main carbon chain skeleton without the production of acrylamide
IF 3.1 4区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Acidovorax PSJ13, a novel, efficient polyacrylamide-degrading bacterium by cleaving the main carbon chain skeleton without the production of acrylamide","authors":"Zhengjiang Wang, Kaili Li, Xuwei Gui, Zhenlun Li","doi":"10.1007/s10532-023-10036-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given the environmental challenge caused by the wide use of polyacrylamide (PAM), an environmental-friendly treatment method is required. This study demonstrates the role of <i>Acidovorax</i> sp. strain PSJ13 isolated from dewatered sludge in efficiently degrading PAM. To be specific, the strain PSJ13 can degrade 51.67% of PAM in 96 h (2.39 mg/(L h)) at 35 °C, pH 7.5 and 5% inoculation amount. Besides, scanning electron microscope, X-ray photoelectron spectroscopy, liquid chromatography–mass spectrometry and high-performance liquid chromatography were employed to analyze samples, and the nitrogen present in the degradation products was investigated. The results showed that the degradation of PAM by PSJ13 started from the side chain and then mainly the –C–C– main chain, which produced no acrylamide monomers. As the first study to report the role of <i>Acidovorax</i> in efficiently degrading PAM, this work may provide a solution for industries that require PAM management.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"581 - 595"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10036-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the environmental challenge caused by the wide use of polyacrylamide (PAM), an environmental-friendly treatment method is required. This study demonstrates the role of Acidovorax sp. strain PSJ13 isolated from dewatered sludge in efficiently degrading PAM. To be specific, the strain PSJ13 can degrade 51.67% of PAM in 96 h (2.39 mg/(L h)) at 35 °C, pH 7.5 and 5% inoculation amount. Besides, scanning electron microscope, X-ray photoelectron spectroscopy, liquid chromatography–mass spectrometry and high-performance liquid chromatography were employed to analyze samples, and the nitrogen present in the degradation products was investigated. The results showed that the degradation of PAM by PSJ13 started from the side chain and then mainly the –C–C– main chain, which produced no acrylamide monomers. As the first study to report the role of Acidovorax in efficiently degrading PAM, this work may provide a solution for industries that require PAM management.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.