M. A. Shilov, A. I. Smirnova, L. N. Zhukova, A. A. Gvozdev, N. N. Rozhkova, T. P. Dyachkova, N. V. Usol’tseva
{"title":"The Influence of the Spatial Organization of Carbon Nanostructures on Antiwear Characteristics of Model Lubricating Systems under a Hard Friction Mode","authors":"M. A. Shilov, A. I. Smirnova, L. N. Zhukova, A. A. Gvozdev, N. N. Rozhkova, T. P. Dyachkova, N. V. Usol’tseva","doi":"10.3103/S1068366623030091","DOIUrl":null,"url":null,"abstract":"<p>The following carbon nanostructures (CNSs) are used: shungite nanocarbon (Sh), multilayered graphene oxide (GO), multiwalled carbon nanotubes (Taunit-M), and fullerene C60. Medical Vaseline (MV) free from any additives or thickeners is used as a lubricant base. Tribological tests are carried out using a 2070 SMT-1 friction machine at a load of 2000 N. The roughness parameters of steel rollers before and after the tests are studied by profilometry. Detailed characteristics of contacting surfaces before and after friction are obtained by scanning and transmission electron microscopy. The experimental data are analyzed using the Hertz and Johnson–Kendall–Roberts models. According to the data on efficiency coefficients <i>k</i><sub>ef</sub>, the studied dispersions are ranked as follows in the order of deterioration of antiwear properties: MV/GO (0.5 wt %), <i>k</i><sub>ef</sub> of 50% > MV/Taunit-M (1.5 wt %), <i>k</i><sub>ef</sub> of 40% > MV/C60 (0.5 wt %), <i>k</i><sub>ef</sub> of 15% > MV/Sh (0.5 wt %), <i>k</i><sub>ef</sub> of 5%, which is in agreement with the above-mentioned sequence of CNSs at low loads. The reason for the best and worst wear factors upon using CNSs in the dispersions under study and factors affecting the values of wear in the hard friction mode are considered. The results of the study can be a basis for the development of new plastic lubricating compositions with carbon nanostructure additives for use in heavily loaded friction units.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366623030091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The following carbon nanostructures (CNSs) are used: shungite nanocarbon (Sh), multilayered graphene oxide (GO), multiwalled carbon nanotubes (Taunit-M), and fullerene C60. Medical Vaseline (MV) free from any additives or thickeners is used as a lubricant base. Tribological tests are carried out using a 2070 SMT-1 friction machine at a load of 2000 N. The roughness parameters of steel rollers before and after the tests are studied by profilometry. Detailed characteristics of contacting surfaces before and after friction are obtained by scanning and transmission electron microscopy. The experimental data are analyzed using the Hertz and Johnson–Kendall–Roberts models. According to the data on efficiency coefficients kef, the studied dispersions are ranked as follows in the order of deterioration of antiwear properties: MV/GO (0.5 wt %), kef of 50% > MV/Taunit-M (1.5 wt %), kef of 40% > MV/C60 (0.5 wt %), kef of 15% > MV/Sh (0.5 wt %), kef of 5%, which is in agreement with the above-mentioned sequence of CNSs at low loads. The reason for the best and worst wear factors upon using CNSs in the dispersions under study and factors affecting the values of wear in the hard friction mode are considered. The results of the study can be a basis for the development of new plastic lubricating compositions with carbon nanostructure additives for use in heavily loaded friction units.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.