Nishat Tasnim, Mohammed Tahmid, Nusrat Jahan and Sultana Razia Syeda*,
{"title":"Risk Assessment Framework for Selecting the Safer Route for Hazmat Transportation Based on Accident Database and Vulnerability Models","authors":"Nishat Tasnim, Mohammed Tahmid, Nusrat Jahan and Sultana Razia Syeda*, ","doi":"10.1021/acs.chas.3c00044","DOIUrl":null,"url":null,"abstract":"<p >Accidents involving the transportation of hazardous materials (hazmats) may cause fatalities, injuries, and property damage along the transport route. It is thus imperative to adopt and implement a risk assessment and management framework that can be easily employed by decision/policymakers. This paper presents a quantitative risk assessment (QRA) framework to select the safest route for the transport of hazardous materials utilizing an accident database and human vulnerability models. Statistical models from relevant accident studies are used to determine the accident enhancing/mitigating contributions of different road geometrical features, which are then applied to data derived from an available database to determine accident frequencies. Consequences of accidents with humans are assessed using ALOHA and vulnerability models, while the risk is determined by combining both accident frequencies and consequences. The proposed method has been applied in a case study to assess the relative risks involved in LPG transportation along two different routes in Bangladesh and to identify the safer route. The effectiveness of a number of risk reduction measures has been assessed to manage risks, and the results of the risk assessment have been spatially presented on a geographical map. This map will help decision makers to make routing decisions and identify route sections that are most at risk to take appropriate emergency response actions and allocate medical and support services during emergencies.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.3c00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Accidents involving the transportation of hazardous materials (hazmats) may cause fatalities, injuries, and property damage along the transport route. It is thus imperative to adopt and implement a risk assessment and management framework that can be easily employed by decision/policymakers. This paper presents a quantitative risk assessment (QRA) framework to select the safest route for the transport of hazardous materials utilizing an accident database and human vulnerability models. Statistical models from relevant accident studies are used to determine the accident enhancing/mitigating contributions of different road geometrical features, which are then applied to data derived from an available database to determine accident frequencies. Consequences of accidents with humans are assessed using ALOHA and vulnerability models, while the risk is determined by combining both accident frequencies and consequences. The proposed method has been applied in a case study to assess the relative risks involved in LPG transportation along two different routes in Bangladesh and to identify the safer route. The effectiveness of a number of risk reduction measures has been assessed to manage risks, and the results of the risk assessment have been spatially presented on a geographical map. This map will help decision makers to make routing decisions and identify route sections that are most at risk to take appropriate emergency response actions and allocate medical and support services during emergencies.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.