{"title":"Evaluation of copper-induced biomolecular changes in different porin mutants of Escherichia coli W3110 by infrared spectroscopy","authors":"Gulcin Cetin Kilicaslan, Rafig Gurbanov, Cihan Darcan","doi":"10.1007/s10867-023-09632-4","DOIUrl":null,"url":null,"abstract":"<div><p>Copper (Cu), one of the heavy metals, plays a vital role in many complex biochemical reactions as a trace element. However, it often becomes toxic when its concentration in the cell exceeds a certain level. Homeostasis of metals in the cell is primarily related to regulating metal transport into and out of the cell. Therefore, it is thought that porin proteins, which have a role in membrane permeability, may also play a role in developing Cu resistance. This study identified the differences between the molecular profiles of wild-type <i>Escherichia coli</i> W3110 and its seven different porin mutants exposed to Cu ions using attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy. The results showed that the absence of porin genes elicits global changes in the structure and composition of membrane lipids and proteins, in both the absence and presence of Cu. The lack of porin genes significantly elevated the amounts of fatty acids and phospholipids. When the alterations in protein secondary structures were compared, the quantity of amide I proteins was diminished by the presence of Cu. However, the amount of amide II proteins increased in porin mutant groups independent of Cu presence or absence. The DNAs are transformed from B- and Z-form to A-form due to porin mutations and the presence of Cu ions. The lack of porin genes increased polysaccharide content independent of Cu presence. This study can help characterize Cu detoxification efficiency and guide for obtaining active living cells to be used in bioremediation.\n</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-023-09632-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-023-09632-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Copper (Cu), one of the heavy metals, plays a vital role in many complex biochemical reactions as a trace element. However, it often becomes toxic when its concentration in the cell exceeds a certain level. Homeostasis of metals in the cell is primarily related to regulating metal transport into and out of the cell. Therefore, it is thought that porin proteins, which have a role in membrane permeability, may also play a role in developing Cu resistance. This study identified the differences between the molecular profiles of wild-type Escherichia coli W3110 and its seven different porin mutants exposed to Cu ions using attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy. The results showed that the absence of porin genes elicits global changes in the structure and composition of membrane lipids and proteins, in both the absence and presence of Cu. The lack of porin genes significantly elevated the amounts of fatty acids and phospholipids. When the alterations in protein secondary structures were compared, the quantity of amide I proteins was diminished by the presence of Cu. However, the amount of amide II proteins increased in porin mutant groups independent of Cu presence or absence. The DNAs are transformed from B- and Z-form to A-form due to porin mutations and the presence of Cu ions. The lack of porin genes increased polysaccharide content independent of Cu presence. This study can help characterize Cu detoxification efficiency and guide for obtaining active living cells to be used in bioremediation.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.