{"title":"Discovery of DNA-Targeting HDAC Inhibitors with Potent Antitumor Efficacy In Vivo That Trigger Antitumor Immunity","authors":"Chen Chen, Xue Li, Huajun Zhao, Meng Liu, Jintong Du, Jian Zhang, Xinying Yang, Xuben Hou*, Hao Fang*","doi":"10.1021/acs.jmedchem.1c02225","DOIUrl":null,"url":null,"abstract":"<p >We observed a synergistic antiproliferation effect with combined use of a DNA minor groove binder and a histone deacetylase (HDAC) inhibitor. Inspired by this result, a new series of benzimidazole<b>–</b>hydroxamate hybrids were designed and synthesized to target both DNA minor groove and HDAC. The most active compounds <b>9k</b> and <b>9l</b> not only exhibited improved HDAC inhibitory activities compared to SAHA but also possessed potent antiproliferation activities against tumor cells. Importantly, compounds <b>9k</b> and <b>9l</b> showed good in vivo antitumor efficacies in both HEL xenograft model and murine melanoma model. We also found that <b>9k</b> and <b>9l</b> promote the antigen presentation and activate T cells, thereby triggering antitumor immunity. Moreover, these inhibitors reshaped the tumor immune microenvironment by inhibiting the recruitment of Treg cells and promoting the polarization of tumor-infiltrating macrophages to M2 type with antitumor activity. Our study validated the effectiveness of incorporating a DNA-binding fragment in HDAC inhibitors as novel multitargeting antitumor agents.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"65 4","pages":"3667–3683"},"PeriodicalIF":6.8000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c02225","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 3
Abstract
We observed a synergistic antiproliferation effect with combined use of a DNA minor groove binder and a histone deacetylase (HDAC) inhibitor. Inspired by this result, a new series of benzimidazole–hydroxamate hybrids were designed and synthesized to target both DNA minor groove and HDAC. The most active compounds 9k and 9l not only exhibited improved HDAC inhibitory activities compared to SAHA but also possessed potent antiproliferation activities against tumor cells. Importantly, compounds 9k and 9l showed good in vivo antitumor efficacies in both HEL xenograft model and murine melanoma model. We also found that 9k and 9l promote the antigen presentation and activate T cells, thereby triggering antitumor immunity. Moreover, these inhibitors reshaped the tumor immune microenvironment by inhibiting the recruitment of Treg cells and promoting the polarization of tumor-infiltrating macrophages to M2 type with antitumor activity. Our study validated the effectiveness of incorporating a DNA-binding fragment in HDAC inhibitors as novel multitargeting antitumor agents.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.