Prediction of Metabolic Stability of Xenobiotics by the Pass and Gusar Programs

IF 0.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
E. I. Korotkevich, A. V. Rudik, A. V. Dmitriev, A. A. Lagunin, D. A. Filimonov
{"title":"Prediction of Metabolic Stability of Xenobiotics by the Pass and Gusar Programs","authors":"E. I. Korotkevich,&nbsp;A. V. Rudik,&nbsp;A. V. Dmitriev,&nbsp;A. A. Lagunin,&nbsp;D. A. Filimonov","doi":"10.1134/S1990750821040089","DOIUrl":null,"url":null,"abstract":"<p>Metabolic stability determines the susceptibility of compounds to biotransformation on the body. It is characterized by such parameters as half-life (<i>T</i><sub>1/2</sub>) and clearance (CL). In vitro systems based on cells or subcellular fractions (mainly liver microsomal enzymes) are consider as models of processes occurring in a living organism and are used for metabolic stability assessment. The data obtained from the experiments are used to build QSAR models. Based on the freely available database ChEMBL v.27, we collected more than 8000 records containing the structures of compounds and their clearance and/or half-life time values obtained on human liver microsomes. GUSAR (General Unrestricted Structure-Activity Relationships) and PASS (Prediction of Activity Spectra for Substances) software were used to create quantitative and qualitative models based on the collected data. A 5-fold cross-validation procedure was used to the model assessments. Thresholds <i>T</i><sub>1/2</sub> = 30 min and CL = 20 mL/min/kg were chosen to distinguish between stable and unstable molecules. The accuracy of the models changes from 0.5 (calculated using 5-fold cross-validation on quantitative models for predicting the half-life) to 0.96 (calculated using 5-fold cross-validation on classification models for predicting the clearance).</p>","PeriodicalId":485,"journal":{"name":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","volume":"15 4","pages":"301 - 305"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990750821040089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic stability determines the susceptibility of compounds to biotransformation on the body. It is characterized by such parameters as half-life (T1/2) and clearance (CL). In vitro systems based on cells or subcellular fractions (mainly liver microsomal enzymes) are consider as models of processes occurring in a living organism and are used for metabolic stability assessment. The data obtained from the experiments are used to build QSAR models. Based on the freely available database ChEMBL v.27, we collected more than 8000 records containing the structures of compounds and their clearance and/or half-life time values obtained on human liver microsomes. GUSAR (General Unrestricted Structure-Activity Relationships) and PASS (Prediction of Activity Spectra for Substances) software were used to create quantitative and qualitative models based on the collected data. A 5-fold cross-validation procedure was used to the model assessments. Thresholds T1/2 = 30 min and CL = 20 mL/min/kg were chosen to distinguish between stable and unstable molecules. The accuracy of the models changes from 0.5 (calculated using 5-fold cross-validation on quantitative models for predicting the half-life) to 0.96 (calculated using 5-fold cross-validation on classification models for predicting the clearance).

利用Pass和Gusar程序预测异种生物的代谢稳定性
代谢稳定性决定了化合物对体内生物转化的敏感性。它的特点是半衰期(T1/2)和间隙(CL)等参数。基于细胞或亚细胞组分(主要是肝微粒体酶)的体外系统被认为是生物体中发生的过程的模型,并用于代谢稳定性评估。利用实验得到的数据建立QSAR模型。基于可免费获得的ChEMBL v.27数据库,我们收集了8000多条包含化合物结构及其在人肝微粒体上的清除率和/或半衰期值的记录。使用GUSAR (General Unrestricted Structure-Activity Relationships)和PASS (Prediction of Activity Spectra for substance)软件根据收集的数据建立定量和定性模型。采用5重交叉验证程序对模型进行评估。选择阈值T1/2 = 30 min和CL = 20 mL/min/kg来区分稳定分子和不稳定分子。模型的准确度从0.5(使用预测半衰期的定量模型的5倍交叉验证计算)到0.96(使用预测间隙的分类模型的5倍交叉验证计算)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
31
期刊介绍: Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry   covers all major aspects of biomedical chemistry and related areas, including proteomics and molecular biology of (patho)physiological processes, biochemistry, neurochemistry, immunochemistry and clinical chemistry, bioinformatics, gene therapy, drug design and delivery, biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine. The journal also publishes review articles. All issues of the journal usually contain solicited reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信