Nanoscale partitioning of carbon black in styrene butadiene rubber and butadiene rubber miscible blends and its effect on physico-mechanical properties
Abitha Vayyaprontavida Kaliyathan, Ajay Vasudeo Rane, Sabu Thomas
{"title":"Nanoscale partitioning of carbon black in styrene butadiene rubber and butadiene rubber miscible blends and its effect on physico-mechanical properties","authors":"Abitha Vayyaprontavida Kaliyathan, Ajay Vasudeo Rane, Sabu Thomas","doi":"10.1007/s42464-023-00197-4","DOIUrl":null,"url":null,"abstract":"<div><p>Determining the partitioning of carbon black [CB] in miscible rubber–rubber blends [RRB’s] is a demanding problem in the rubber industry, testing one’s ability (especially tyre industry); hence, this research work aims to investigate the partitioning of CB in miscible styrene butadiene rubber [SBR]/butadiene rubber [BR] blends. SBR:BR with blend ratios of 70:30/50:50 and 30:70 with 50 phr CB were prepared on two-roll mill. Nanoscale partitioning of CB within the nanoscale phase-separated SBR/BR blends was quantitatively determined using dynamic mechanical analysis [DMA]. DMA confirmed 63%, 93%, and 45% of CB partitioning towards BR phases of 70:30, 50:50, and 30:70 in CB-filled SBR/BR blends. An attempt to determine the partitioning of CB was also made by making use of solid-state nuclear magnetic resonance spectroscopy [SS-NMR spectroscopy] to interrelate the partitioning of CB determined using DMA. TEM images were helpful in observing CB's dispersion and network ability in CB-filled SBR/BR blends. The results of CB partitioning confirm maximum partitioning of CB towards the nano-dispersed phase in CB-filled SBR/BR blends and are in well agreement with the constrained regions of BR and mechanical properties of CB-filled SBR/BR blends. Attenuated total reflectance-Fourier transform infrared spectroscopy’s (ATR-FTIR spectroscopy) spectra were used as a tool to determine the interactions within CB-filled rubbers and RRB’s in comparison to their neat counterparts. To the best of our knowledge, partitioning of CB controlled by nanoscale phase-separated morphology and its effect on mechanical properties has not been studied so far; hence, this study would be significant to academics and industrial researchers working in the area of rubber composites.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 2","pages":"81 - 98"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00197-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the partitioning of carbon black [CB] in miscible rubber–rubber blends [RRB’s] is a demanding problem in the rubber industry, testing one’s ability (especially tyre industry); hence, this research work aims to investigate the partitioning of CB in miscible styrene butadiene rubber [SBR]/butadiene rubber [BR] blends. SBR:BR with blend ratios of 70:30/50:50 and 30:70 with 50 phr CB were prepared on two-roll mill. Nanoscale partitioning of CB within the nanoscale phase-separated SBR/BR blends was quantitatively determined using dynamic mechanical analysis [DMA]. DMA confirmed 63%, 93%, and 45% of CB partitioning towards BR phases of 70:30, 50:50, and 30:70 in CB-filled SBR/BR blends. An attempt to determine the partitioning of CB was also made by making use of solid-state nuclear magnetic resonance spectroscopy [SS-NMR spectroscopy] to interrelate the partitioning of CB determined using DMA. TEM images were helpful in observing CB's dispersion and network ability in CB-filled SBR/BR blends. The results of CB partitioning confirm maximum partitioning of CB towards the nano-dispersed phase in CB-filled SBR/BR blends and are in well agreement with the constrained regions of BR and mechanical properties of CB-filled SBR/BR blends. Attenuated total reflectance-Fourier transform infrared spectroscopy’s (ATR-FTIR spectroscopy) spectra were used as a tool to determine the interactions within CB-filled rubbers and RRB’s in comparison to their neat counterparts. To the best of our knowledge, partitioning of CB controlled by nanoscale phase-separated morphology and its effect on mechanical properties has not been studied so far; hence, this study would be significant to academics and industrial researchers working in the area of rubber composites.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.