Solubility of Food-Relevant Substances in Pure and Modified Supercritical Carbon Dioxide: Experimental Data (2011–Present), Modeling, and Related Applications

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Clóvis A. Balbinot Filho, Jônatas L. Dias, Evertan A. Rebelatto, Marcelo Lanza
{"title":"Solubility of Food-Relevant Substances in Pure and Modified Supercritical Carbon Dioxide: Experimental Data (2011–Present), Modeling, and Related Applications","authors":"Clóvis A. Balbinot Filho,&nbsp;Jônatas L. Dias,&nbsp;Evertan A. Rebelatto,&nbsp;Marcelo Lanza","doi":"10.1007/s12393-023-09343-5","DOIUrl":null,"url":null,"abstract":"<div><p>For many high-pressure processes employing pressurized fluids, such as supercritical fluid extraction (SFE) of natural matrices with supercritical carbon dioxide (scCO<sub>2</sub>), CO<sub>2</sub> plays a central role as a solvent, solubilizing agent, or medium for extracting and processing diverse food-type substances, in which the knowledge on the solubility behavior of multiple compounds at the varying process conditions is essential in the process design, but not completely understood. High-pressure solubility data in pure scCO<sub>2</sub> or cosolvent-modified CO<sub>2</sub> of distinct types of organic compounds found in or related to food (mainly vegetable oils, essential oils, carotenoids, phenolics, and vitamins) published in the last decade were reviewed, encompassing temperatures of 298–373 K and pressures up to 95 MPa. Crossover phenomena, solubility enhancements in cosolvent systems or those containing a co-solute, and the antisolvent feature of CO<sub>2</sub> are also discussed. Current models for the correlation of solubility data by semi-empirical and thermodynamic models are compared, and the limitations of each class of models are highlighted. Lipid-soluble substances (fatty acid esters, fatty acids, and essential oils) are the most CO<sub>2</sub>-soluble food-type substances in contrast to polar and complex polyphenols and carotenoids. The investigated solutes can be obtained by SFE, separated by fractionation using scCO<sub>2</sub>, or applied to enzymatic reactions and particle formation processes. It was concluded based on recent applications that improved SFE, effective separation factors for supercritical fractionation, better solubilization of reactive systems, and supersaturation conditions to obtain micronized particles could be established based on the solubility behavior of dissolved solutes in the supercritical media at high pressures.\n</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"466 - 490"},"PeriodicalIF":5.3000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09343-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

For many high-pressure processes employing pressurized fluids, such as supercritical fluid extraction (SFE) of natural matrices with supercritical carbon dioxide (scCO2), CO2 plays a central role as a solvent, solubilizing agent, or medium for extracting and processing diverse food-type substances, in which the knowledge on the solubility behavior of multiple compounds at the varying process conditions is essential in the process design, but not completely understood. High-pressure solubility data in pure scCO2 or cosolvent-modified CO2 of distinct types of organic compounds found in or related to food (mainly vegetable oils, essential oils, carotenoids, phenolics, and vitamins) published in the last decade were reviewed, encompassing temperatures of 298–373 K and pressures up to 95 MPa. Crossover phenomena, solubility enhancements in cosolvent systems or those containing a co-solute, and the antisolvent feature of CO2 are also discussed. Current models for the correlation of solubility data by semi-empirical and thermodynamic models are compared, and the limitations of each class of models are highlighted. Lipid-soluble substances (fatty acid esters, fatty acids, and essential oils) are the most CO2-soluble food-type substances in contrast to polar and complex polyphenols and carotenoids. The investigated solutes can be obtained by SFE, separated by fractionation using scCO2, or applied to enzymatic reactions and particle formation processes. It was concluded based on recent applications that improved SFE, effective separation factors for supercritical fractionation, better solubilization of reactive systems, and supersaturation conditions to obtain micronized particles could be established based on the solubility behavior of dissolved solutes in the supercritical media at high pressures.

Abstract Image

食品相关物质在纯和改性超临界二氧化碳中的溶解度:实验数据(2011 -至今),建模和相关应用
对于许多采用加压流体的高压工艺,例如用超临界二氧化碳(scCO2)对天然基质进行超临界流体萃取(SFE),二氧化碳作为溶剂、增溶剂或介质在提取和加工各种食品类物质中起着核心作用,其中多种化合物在不同工艺条件下的溶解度行为的知识在工艺设计中是必不可少的,但尚未完全了解。回顾了近十年来在食品(主要是植物油、精油、类胡萝卜素、酚类和维生素)中发现的不同类型的有机化合物在纯scCO2或助溶剂改性CO2中的高压溶解度数据,包括298-373 K的温度和高达95 MPa的压力。还讨论了交叉现象、共溶剂体系或含共溶质体系中溶解度的增强以及CO2的抗溶剂特性。比较了半经验模型和热力学模型对溶解度数据关联的现有模型,并指出了每一类模型的局限性。脂溶性物质(脂肪酸酯、脂肪酸和精油)与极性和复杂的多酚和类胡萝卜素相比,是最易溶解二氧化碳的食物类物质。所研究的溶质可以通过SFE获得,用scCO2分馏分离,或应用于酶促反应和颗粒形成过程。基于超临界介质中溶质在高压下的溶解度行为,可以建立改进的SFE、超临界分馏的有效分离因子、反应体系更好的增溶性以及获得微粉颗粒的过饱和条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信