3D printing fabrication process for fine control of microneedle shape

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Jinwoong Jeong, Jaeu Park, Sanghoon Lee
{"title":"3D printing fabrication process for fine control of microneedle shape","authors":"Jinwoong Jeong,&nbsp;Jaeu Park,&nbsp;Sanghoon Lee","doi":"10.1186/s40486-022-00165-4","DOIUrl":null,"url":null,"abstract":"<div><p>Microneedle electrode (ME) is used to monitor bioelectrical signals by penetrating via the skin, and it compensates for a limitation of surface electrodes. However, existing fabrication of ME have limited in controlling the shape of microneedles, which is directly relevant to the performance and durability of microneedles as an electrode. In this study, a novel method using 3D printing is developed to control needle bevel angles. By controlling the angle of printing direction, needle bevel angles are changed. Various angles of printing direction (0–90°) are investigated to fabricate moldings, and those moldings are used for microneedle fabrications using biocompatible polyimide (PI). The height implementation rate and aspect ratio are also investigated to optimize PI microneedles. The penetration test of the fabricated microneedles is conducted in porcine skin. The PI microneedle of 1000 μm fabricated by the printing angle of 40° showed the bevel angle of 54.5°, which can penetrate the porcine skin. The result demonstrates that this suggested fabrication can be applied using various polymeric materials to optimize microneedle shape.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00165-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-022-00165-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Microneedle electrode (ME) is used to monitor bioelectrical signals by penetrating via the skin, and it compensates for a limitation of surface electrodes. However, existing fabrication of ME have limited in controlling the shape of microneedles, which is directly relevant to the performance and durability of microneedles as an electrode. In this study, a novel method using 3D printing is developed to control needle bevel angles. By controlling the angle of printing direction, needle bevel angles are changed. Various angles of printing direction (0–90°) are investigated to fabricate moldings, and those moldings are used for microneedle fabrications using biocompatible polyimide (PI). The height implementation rate and aspect ratio are also investigated to optimize PI microneedles. The penetration test of the fabricated microneedles is conducted in porcine skin. The PI microneedle of 1000 μm fabricated by the printing angle of 40° showed the bevel angle of 54.5°, which can penetrate the porcine skin. The result demonstrates that this suggested fabrication can be applied using various polymeric materials to optimize microneedle shape.

3D打印制造工艺对微针形状进行精细控制
微针电极(ME)通过穿透皮肤来监测生物电信号,它弥补了表面电极的局限性。然而,现有的微电极制造技术在控制微针的形状方面存在局限性,这直接关系到微针作为电极的性能和耐久性。在本研究中,开发了一种利用3D打印技术控制针头斜角的新方法。通过控制印刷方向的角度,可以改变针的斜角。研究了不同角度的打印方向(0-90°)来制造模具,这些模具用于使用生物相容性聚酰亚胺(PI)制造微针。为了优化PI微针,还研究了其高度实现率和纵横比。在猪皮中进行了微针的刺入试验。以40°的打印角度制备的1000 μm PI微针的斜角为54.5°,可以穿透猪皮。结果表明,这种方法可以应用于各种聚合物材料来优化微针的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信