Age Classification in Forensic Medicine Using Machine Learning Techniques.

IF 1.1 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Sovremennye Tehnologii v Medicine Pub Date : 2022-01-01 Epub Date: 2022-01-28 DOI:10.17691/stm2022.14.1.02
G V Zolotenkova, A I Rogachev, Y I Pigolkin, I S Edelev, V N Borshchevskaya, R Cameriere
{"title":"Age Classification in Forensic Medicine Using Machine Learning Techniques.","authors":"G V Zolotenkova,&nbsp;A I Rogachev,&nbsp;Y I Pigolkin,&nbsp;I S Edelev,&nbsp;V N Borshchevskaya,&nbsp;R Cameriere","doi":"10.17691/stm2022.14.1.02","DOIUrl":null,"url":null,"abstract":"<p><p><b>The aim of the study</b> was to assess the capabilities of age determination (age group) at death using classification techniques by histomorphometric characteristics of osseous and cartilaginous tissue aging.</p><p><strong>Materials and methods: </strong>The study material was a database containing the findings of morphometric researches of osseous and cartilaginous tissue histologic specimens from 294 categorized male corpses aged 10-93 years. For data analysis and classification we used modern machine learning methods: k-NN, SVM, logistic regression, CatBoost, SGD, naive Bayes, random forest, nonlinear dimensionality reduction methods (t-SNE and uMAP), and recursive feature elimination for feature selection.</p><p><strong>Results: </strong>The used techniques (algorithms) provided effective representation of a complex data set (76 histomorphometric features), allowing to reveal the cluster structure inside the low dimensional feature space, thus fitting the classifier becomes even more reasonable. During feature selection, we estimated their importance for age group classification and studied the relationship between classification quality and the number of features inside the feature space. Data pre-processing made it possible to get rid of noise and keep most informative features, thereby accelerating a learning process and improving the classification quality. Data projection showed more well-defined cluster structure in the space of selected features. The accuracy of establishing certain groups was equal to 90%. It proves high efficiency of machine learning techniques used for forensic age diagnostics based on histomorphometric findings.</p>","PeriodicalId":51886,"journal":{"name":"Sovremennye Tehnologii v Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376755/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye Tehnologii v Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2022.14.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of the study was to assess the capabilities of age determination (age group) at death using classification techniques by histomorphometric characteristics of osseous and cartilaginous tissue aging.

Materials and methods: The study material was a database containing the findings of morphometric researches of osseous and cartilaginous tissue histologic specimens from 294 categorized male corpses aged 10-93 years. For data analysis and classification we used modern machine learning methods: k-NN, SVM, logistic regression, CatBoost, SGD, naive Bayes, random forest, nonlinear dimensionality reduction methods (t-SNE and uMAP), and recursive feature elimination for feature selection.

Results: The used techniques (algorithms) provided effective representation of a complex data set (76 histomorphometric features), allowing to reveal the cluster structure inside the low dimensional feature space, thus fitting the classifier becomes even more reasonable. During feature selection, we estimated their importance for age group classification and studied the relationship between classification quality and the number of features inside the feature space. Data pre-processing made it possible to get rid of noise and keep most informative features, thereby accelerating a learning process and improving the classification quality. Data projection showed more well-defined cluster structure in the space of selected features. The accuracy of establishing certain groups was equal to 90%. It proves high efficiency of machine learning techniques used for forensic age diagnostics based on histomorphometric findings.

Abstract Image

Abstract Image

Abstract Image

使用机器学习技术的法医学年龄分类。
本研究的目的是通过骨性和软骨组织老化的组织形态学特征,利用分类技术评估死亡时年龄测定(年龄组)的能力。材料和方法:研究材料为数据库,包含294例10-93岁分类男性尸体的骨和软骨组织组织学标本的形态计量学研究结果。对于数据分析和分类,我们使用了现代机器学习方法:k-NN、SVM、逻辑回归、CatBoost、SGD、朴素贝叶斯、随机森林、非线性降维方法(t-SNE和uMAP)和递归特征消除来进行特征选择。结果:所使用的技术(算法)提供了复杂数据集(76个组织形态特征)的有效表示,允许揭示低维特征空间内的聚类结构,从而使分类器的拟合更加合理。在特征选择过程中,我们估计了它们对年龄组分类的重要性,并研究了分类质量与特征空间内特征数量的关系。数据预处理可以去除噪声,保留大部分信息特征,从而加快学习过程,提高分类质量。数据投影在选择的特征空间中显示出更明确的聚类结构。建立某些群体的准确率为90%。这证明了机器学习技术用于基于组织形态学发现的法医年龄诊断的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sovremennye Tehnologii v Medicine
Sovremennye Tehnologii v Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
1.80
自引率
0.00%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信