Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shizhong Zhang, Sumeet Malik, Nisar Ali, Adnan Khan, Muhammad Bilal, Kashif Rasool
{"title":"Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration","authors":"Shizhong Zhang,&nbsp;Sumeet Malik,&nbsp;Nisar Ali,&nbsp;Adnan Khan,&nbsp;Muhammad Bilal,&nbsp;Kashif Rasool","doi":"10.1007/s41061-022-00397-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.</p></div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372017/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00397-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.

Abstract Image

Abstract Image

Abstract Image

用于环境修复的共价和非共价功能化纳米材料
纳米技术已成为一门非凡而迅速发展的科学学科。它通过在不同领域提供不同的视野,重塑了整个世界的命运。纳米材料因其难以置信的小尺寸和大表面积而具有吸引力。除了天然存在的纳米材料外,人工合成的纳米材料正在大规模制备,具有不同的尺寸和性能。这种纳米材料作为一种创新和绿色的方法被应用于多个领域。为了扩大纳米材料的应用范围和提高其性能,人们正在大规模地进行纳米材料的功能化和工程化。功能化有助于增加纳米材料现有的有用性能,从而扩大其应用范围。一大批共价和非共价功能化纳米材料(FNMs),包括碳、金属氧化物、量子点,以及这些材料与其他有机或无机材料的复合材料,正在被合成并用于环境修复应用,包括废水处理。本文综述了fnm的合成、报道技术及其在吸附和光催化去除废水中污染物方面的应用进展。未来的前景也进行了审查,并提出了在fnm领域获得巨大利益的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信