Dynamics of a multi-strain malaria model with diffusion in a periodic environment.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yangyang Shi, Hongyong Zhao, Xuebing Zhang
{"title":"Dynamics of a multi-strain malaria model with diffusion in a periodic environment.","authors":"Yangyang Shi,&nbsp;Hongyong Zhao,&nbsp;Xuebing Zhang","doi":"10.1080/17513758.2022.2144648","DOIUrl":null,"url":null,"abstract":"<p><p>This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mi>i</mi></mrow></msub></math> (<i>i</i> = 1, 2). Quantitative analysis indicates that the disease-free <i>ω</i>-periodic solution is globally attractive when <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math>, while if <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>></mo><msub><mi>R</mi><mrow><mi>j</mi></mrow></msub></math> (<math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math>), then strain <i>i</i> persists and strain <i>j</i> dies out. More interestingly, when <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math> are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></math>. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2022.2144648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers Ri and R^i (i = 1, 2). Quantitative analysis indicates that the disease-free ω-periodic solution is globally attractive when Ri<1, while if Ri>1>Rj (ij,i,j=1,2), then strain i persists and strain j dies out. More interestingly, when R1 and R2 are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are R^1>1 and R^2>1. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.

周期环境下具有扩散的多株疟疾模型动力学。
本文主要探讨空间异质性、媒介偏倚效应、多菌株、温度依赖性外部潜伏期(EIP)和季节性对疟疾传播的复杂影响。我们提出了一个具有扩散和周期延迟的多菌株疟疾传播模型,并定义了繁殖数Ri和R^i (i =1,2)。定量分析表明,当Ri1时无病ω-周期解全局吸引,而当Ri>1>Rj (i≠j,i,j=1,2)时,则菌株i持续存在,菌株j灭绝。更有趣的是,当R1和R2大于1时,两个菌株也会发生竞争排斥。在异质环境下,两菌株的共存条件分别为R^1>1和R^2>1。数值模拟验证了分析结果,揭示了在研究疟疾传播时忽略媒介偏差效应或季节性将低估疾病传播的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信