{"title":"MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B.","authors":"W Yan, Y Feng, Z Lei, W Kuang, C Long","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial injury is a common complication of sepsis. MicroRNA (miRNA) miR-214-3p is protective against myocardial injury caused by sepsis, but its mechanism in lipopolysaccharide (LPS)- induced cardiomyocyte injury is still unclear. An AC16 cell injury model was induced by LPS treatment. Cell Counting Kit-8 and flow cytometry assay showed decreased cell viability and increased apoptosis in LPS-treated AC16 cells. The levels of caspase- 3, Bax, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), myosin 6 (Myh6), myosin 7 (Myh7), reactive oxygen species (ROS), and malondialdehyde (MDA) were increased in LPS-treated AC16 cells, but the levels of Bcl-2 and superoxide dismutase (SOD) were decreased. MiR-214-3p was down-regulated and cathepsin B (CTSB) was upregulated in LPS-treated AC16 cells. At the same time, miR-214-3p could target CTSB and reduce its expression. We also found that a miR-214-3p mimic or CTSB silencing could significantly reduce LPSinduced apoptosis, decrease ROS, MDA, caspase-3, and Bax and increase SOD and Bcl-2. CTSB silencing could significantly reduce ANP, BNP, Myh6, and Myh7 in LPS-treated AC16 cells. The effects of CTSB silencing were reversed by a miR-214-3p inhibitor. In summary, miR-214-3p could inhibit LPSinduced myocardial injury by targeting CTSB, which provides a new idea for myocardial damage caused by sepsis.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"78-85"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial injury is a common complication of sepsis. MicroRNA (miRNA) miR-214-3p is protective against myocardial injury caused by sepsis, but its mechanism in lipopolysaccharide (LPS)- induced cardiomyocyte injury is still unclear. An AC16 cell injury model was induced by LPS treatment. Cell Counting Kit-8 and flow cytometry assay showed decreased cell viability and increased apoptosis in LPS-treated AC16 cells. The levels of caspase- 3, Bax, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), myosin 6 (Myh6), myosin 7 (Myh7), reactive oxygen species (ROS), and malondialdehyde (MDA) were increased in LPS-treated AC16 cells, but the levels of Bcl-2 and superoxide dismutase (SOD) were decreased. MiR-214-3p was down-regulated and cathepsin B (CTSB) was upregulated in LPS-treated AC16 cells. At the same time, miR-214-3p could target CTSB and reduce its expression. We also found that a miR-214-3p mimic or CTSB silencing could significantly reduce LPSinduced apoptosis, decrease ROS, MDA, caspase-3, and Bax and increase SOD and Bcl-2. CTSB silencing could significantly reduce ANP, BNP, Myh6, and Myh7 in LPS-treated AC16 cells. The effects of CTSB silencing were reversed by a miR-214-3p inhibitor. In summary, miR-214-3p could inhibit LPSinduced myocardial injury by targeting CTSB, which provides a new idea for myocardial damage caused by sepsis.
期刊介绍:
Journal of Cellular and Molecular Biology publishes articles describing original research aimed at the elucidation of a wide range of questions of biology and medicine at the cellular and molecular levels. Studies on all organisms as well as on human cells and tissues are welcome.