{"title":"Serum inflammatory and brain injury biomarkers in COVID-19 patients admitted to intensive care unit: A pilot study","authors":"Stelios Kokkoris , Elisavet Stamataki , Giorgos Emmanouil , Christina Psachoulia , Theodora Ntaidou , Aikaterini Maragouti , Angeliki Kanavou , Sotirios Malachias , Foteini Christodouli , Ioannis Papachatzakis , Vassiliki Markaki , Dimitrios Katsaros , Ioannis Vasileiadis , Constantinos Glynos , Christina Routsi","doi":"10.1016/j.ensci.2022.100434","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The aim of this study was to measure serum brain injury biomarkers in patients with COVID-19 admitted to intensive care unit (ICU), without evidence of brain impairment, and to determine potential correlations with systemic inflammatory markers, illness severity, and outcome.</p></div><div><h3>Methods</h3><p>In patients admitted to the ICU with COVID-19, without clinical evidence of brain injury, blood S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE) and interleukin-6 (IL-6) were measured on admission. Clinical, routine laboratory data and illness severity were recorded. Comparisons between 28-day survivors and non-survivors and correlations of neurological biomarkers to other laboratory data and illness severity, were analyzed.</p></div><div><h3>Results</h3><p>We included 50 patients, median age 64 [IQR 58–78] years, 39 (78%) males, 39 (78%) mechanically ventilated and 11 (22%) under high flow nasal oxygen treatment. S100B and NSE were increased in 19 (38%) and 45 (90%) patients, respectively. S100B was significantly elevated in non-survivors compared to survivors: 0.15 [0.10–0.29] versus 0.11 [0.07–0.17] μg/L, respectively, (<em>p</em> = 0.03), and significantly correlated with age, IL-6, arterial lactate, noradrenaline dose, illness severity and lymphocyte count. IL-6 was significantly correlated with C-reactive protein, noradrenaline dose and organ failure severity. NSE was correlated only with lactate dehydrogenase.</p></div><div><h3>Conclusion</h3><p>Brain injury biomarkers were frequently elevated in COVID-19 ICU patients, in the absence of clinical evidence of brain injury. S100B was significantly correlated with IL-6, low lymphocyte count, hypoperfusion indices, illness severity, and short-term outcome. These findings indicate a possible brain astrocytes and neurons involvement, also suggesting a broader role of S100B in systemic inflammatory response.</p></div>","PeriodicalId":37974,"journal":{"name":"eNeurologicalSci","volume":"29 ","pages":"Article 100434"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/51/f1/main.PMC9632260.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeurologicalSci","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405650222000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 7
Abstract
Background
The aim of this study was to measure serum brain injury biomarkers in patients with COVID-19 admitted to intensive care unit (ICU), without evidence of brain impairment, and to determine potential correlations with systemic inflammatory markers, illness severity, and outcome.
Methods
In patients admitted to the ICU with COVID-19, without clinical evidence of brain injury, blood S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE) and interleukin-6 (IL-6) were measured on admission. Clinical, routine laboratory data and illness severity were recorded. Comparisons between 28-day survivors and non-survivors and correlations of neurological biomarkers to other laboratory data and illness severity, were analyzed.
Results
We included 50 patients, median age 64 [IQR 58–78] years, 39 (78%) males, 39 (78%) mechanically ventilated and 11 (22%) under high flow nasal oxygen treatment. S100B and NSE were increased in 19 (38%) and 45 (90%) patients, respectively. S100B was significantly elevated in non-survivors compared to survivors: 0.15 [0.10–0.29] versus 0.11 [0.07–0.17] μg/L, respectively, (p = 0.03), and significantly correlated with age, IL-6, arterial lactate, noradrenaline dose, illness severity and lymphocyte count. IL-6 was significantly correlated with C-reactive protein, noradrenaline dose and organ failure severity. NSE was correlated only with lactate dehydrogenase.
Conclusion
Brain injury biomarkers were frequently elevated in COVID-19 ICU patients, in the absence of clinical evidence of brain injury. S100B was significantly correlated with IL-6, low lymphocyte count, hypoperfusion indices, illness severity, and short-term outcome. These findings indicate a possible brain astrocytes and neurons involvement, also suggesting a broader role of S100B in systemic inflammatory response.
期刊介绍:
eNeurologicalSci provides a medium for the prompt publication of original articles in neurology and neuroscience from around the world. eNS places special emphasis on articles that: 1) provide guidance to clinicians around the world (Best Practices, Global Neurology); 2) report cutting-edge science related to neurology (Basic and Translational Sciences); 3) educate readers about relevant and practical clinical outcomes in neurology (Outcomes Research); and 4) summarize or editorialize the current state of the literature (Reviews, Commentaries, and Editorials). eNS accepts most types of manuscripts for consideration including original research papers, short communications, reviews, book reviews, letters to the Editor, opinions and editorials. Topics considered will be from neurology-related fields that are of interest to practicing physicians around the world. Examples include neuromuscular diseases, demyelination, atrophies, dementia, neoplasms, infections, epilepsies, disturbances of consciousness, stroke and cerebral circulation, growth and development, plasticity and intermediary metabolism. The fields covered may include neuroanatomy, neurochemistry, neuroendocrinology, neuroepidemiology, neurogenetics, neuroimmunology, neuroophthalmology, neuropathology, neuropharmacology, neurophysiology, neuropsychology, neuroradiology, neurosurgery, neurooncology, neurotoxicology, restorative neurology, and tropical neurology.