Multimodal parameter spaces of a complex multi-channel neuron model.

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Frontiers in Systems Neuroscience Pub Date : 2022-10-20 eCollection Date: 2022-01-01 DOI:10.3389/fnsys.2022.999531
Y Curtis Wang, Johann Rudi, James Velasco, Nirvik Sinha, Gideon Idumah, Randall K Powers, Charles J Heckman, Matthieu K Chardon
{"title":"Multimodal parameter spaces of a complex multi-channel neuron model.","authors":"Y Curtis Wang, Johann Rudi, James Velasco, Nirvik Sinha, Gideon Idumah, Randall K Powers, Charles J Heckman, Matthieu K Chardon","doi":"10.3389/fnsys.2022.999531","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin-Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632740/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2022.999531","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin-Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.

复杂多通道神经元模型的多模态参数空间。
霍奇金-赫胥黎离子通道模型(HH 模型)是帮助我们理解神经元行为的最常见模型类型之一。推断 HH 模型参数的一个主要挑战是非唯一性:对于相同的输入刺激,许多不同的离子通道参数值会产生类似的输出。这种现象导致目标函数呈现多种模式(即多个局部最小值)。这种局部最优性的非唯一性给许多算法优化技术的参数估计带来了挑战。此外,HH 模型还具有严重的非线性特征,这为算法推断参数带来了更多挑战。为了在高维参数空间中用一种简单易行的方法应对这些挑战,我们建议使用一种特殊的马尔科夫链蒙特卡罗(MCMC)算法,该算法的优点是可以在贝叶斯框架中推断参数。这种贝叶斯方法适用于逆问题的多模态求解。我们使用三通道 HH 模型介绍并演示了该方法。然后,我们将重点放在八通道 HH 模型中九个参数的推断上,并对此进行了详细分析。我们探讨了 MCMC 算法如何利用五个注入电流水平揭示推断参数之间的复杂关系。MCMC 方法提供了一个九维后验分布,我们通过可能参数集的解图或地貌图对其进行可视化分析。可视化解图显示了多模态后验的新的复杂结构,允许选择局部和全局最优值集,并直观地揭示了参数敏感性和模型鲁棒性较高的区域。根据我们的设想,当 MCMC 算法应用于实验数据时,这些解图可帮助实验人员改进未来实验的设计,提高科研效率,改善模型结构和构思。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信