{"title":"Our astrochemical heritage","authors":"Paola Caselli, Cecilia Ceccarelli","doi":"10.1007/s00159-012-0056-x","DOIUrl":null,"url":null,"abstract":"<p>Our Sun and planetary system were born about 4.5 billion years ago. How did this happen, and what is the nature of our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet-formation period. They are represented by the prestellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity.</p><p>In this review, we first present the information on the chemical composition of meteorites, comets and other small bodies of the Solar System, which is potentially linked to the first phases of the Solar System’s formation. Then we describe the observed chemical composition in the prestellar core, protostellar envelope and protoplanetary-disk phases, including the processes that lead to them. Finally, we draw together pieces from the different objects and phases to understand whether and how much we inherited chemically from the time of the Sun’s birth.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"20 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2012-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-012-0056-x","citationCount":"288","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-012-0056-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 288
Abstract
Our Sun and planetary system were born about 4.5 billion years ago. How did this happen, and what is the nature of our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet-formation period. They are represented by the prestellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity.
In this review, we first present the information on the chemical composition of meteorites, comets and other small bodies of the Solar System, which is potentially linked to the first phases of the Solar System’s formation. Then we describe the observed chemical composition in the prestellar core, protostellar envelope and protoplanetary-disk phases, including the processes that lead to them. Finally, we draw together pieces from the different objects and phases to understand whether and how much we inherited chemically from the time of the Sun’s birth.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.