Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function.

Q4 Biochemistry, Genetics and Molecular Biology
Alexandria J Cockrell, Jennifer L Gerton
{"title":"Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function.","authors":"Alexandria J Cockrell,&nbsp;Jennifer L Gerton","doi":"10.1007/978-3-031-06573-6_19","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-06573-6_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.

核仁组织区作为基于转录的核仁结构和功能的支架。
真核生物基因组在串联阵列中维持核糖体DNA基因重复序列的多个拷贝,以提供足够的核糖体rna来制造核糖体。这些DNA重复序列是基因组中转录率最高的区域,有专门的转录机制来管理在增殖细胞中产生超过50%的总RNA的巨大任务。这些排列被称为核仁组织区(NORs),构成核仁室的支架,核糖体在那里发生生物发生。分子和细胞生物学的进步使人们对这些阵列如何在基因组中转录和组织有了深刻的认识。它们的许多生物学特性是由它们的高转录水平驱动的,这也推动了独特方法的发展,以了解rDNA基因活性,从经典技术开始,如银染色和米勒扩散。然而,CRISPR基因编辑、超分辨率显微镜和长读测序等现代方法的应用使本文所述的最新进展成为可能,很快就会有更多的发现。本章重点介绍了已知的NOR转录和组织以及历史上和目前应用的技术。鉴于NORs对机体健康和疾病的潜在影响,如本章末尾所强调的,该领域必须继续开发和应用创新分析,以了解核糖体DNA重复序列的遗传、表观遗传和组织者特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信