The role of biofilm matrix composition in controlling colony expansion and morphology.

IF 3.6 3区 生物学 Q1 BIOLOGY
Interface Focus Pub Date : 2022-10-14 eCollection Date: 2022-12-06 DOI:10.1098/rsfs.2022.0035
Samuel G V Charlton, Dorothee L Kurz, Steffen Geisel, Joaquin Jimenez-Martinez, Eleonora Secchi
{"title":"The role of biofilm matrix composition in controlling colony expansion and morphology.","authors":"Samuel G V Charlton, Dorothee L Kurz, Steffen Geisel, Joaquin Jimenez-Martinez, Eleonora Secchi","doi":"10.1098/rsfs.2022.0035","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are biological viscoelastic gels composed of bacterial cells embedded in a self-secreted polymeric extracellular matrix (ECM). In environmental settings, such as in the rhizosphere and phyllosphere, biofilm colonization occurs at the solid-air interface. The biofilms' ability to colonize and expand over these surfaces depends on the formation of osmotic gradients and ECM viscoelastic properties. In this work, we study the influence of biofilm ECM components on its viscoelasticity and expansion, using the model organism <i>Bacillus subtilis</i> and deletion mutants of its three major ECM components, TasA, EPS and BslA. Using a multi-scale approach, we quantified macro-scale viscoelasticity and expansion dynamics. Furthermore, we used a microsphere assay to visualize the micro-scale expansion patterns. We find that the viscoelastic phase angle <math><mi>Φ</mi></math> is likely the best viscoelastic parameter correlating to biofilm expansion dynamics. Moreover, we quantify the sensitivity of the biofilm to changes in substrate water potential as a function of ECM composition. Finally, we find that the deletion of ECM components significantly increases the coherence of micro-scale colony expansion patterns. These results demonstrate the influence of ECM viscoelasticity and substrate water potential on the expansion of biofilm colonies on wet surfaces at the air-solid interface, commonly found in natural environments.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560791/pdf/rsfs.2022.0035.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2022.0035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms are biological viscoelastic gels composed of bacterial cells embedded in a self-secreted polymeric extracellular matrix (ECM). In environmental settings, such as in the rhizosphere and phyllosphere, biofilm colonization occurs at the solid-air interface. The biofilms' ability to colonize and expand over these surfaces depends on the formation of osmotic gradients and ECM viscoelastic properties. In this work, we study the influence of biofilm ECM components on its viscoelasticity and expansion, using the model organism Bacillus subtilis and deletion mutants of its three major ECM components, TasA, EPS and BslA. Using a multi-scale approach, we quantified macro-scale viscoelasticity and expansion dynamics. Furthermore, we used a microsphere assay to visualize the micro-scale expansion patterns. We find that the viscoelastic phase angle Φ is likely the best viscoelastic parameter correlating to biofilm expansion dynamics. Moreover, we quantify the sensitivity of the biofilm to changes in substrate water potential as a function of ECM composition. Finally, we find that the deletion of ECM components significantly increases the coherence of micro-scale colony expansion patterns. These results demonstrate the influence of ECM viscoelasticity and substrate water potential on the expansion of biofilm colonies on wet surfaces at the air-solid interface, commonly found in natural environments.

生物膜基质组成在控制菌落扩展和形态中的作用。
生物膜是一种生物粘弹性凝胶,由嵌入自我分泌的聚合物细胞外基质(ECM)中的细菌细胞组成。在环境环境中,如根际和叶际,生物膜定殖发生在固体-空气界面。生物膜在这些表面上定植和扩张的能力取决于渗透梯度的形成和ECM的粘弹性。在这项工作中,我们使用模式生物枯草芽孢杆菌及其三种主要ECM成分TasA、EPS和BslA的缺失突变体,研究了生物膜ECM成分对其粘弹性和膨胀的影响。使用多尺度方法,我们量化了宏观尺度的粘弹性和膨胀动力学。此外,我们使用微球测定法来观察微尺度膨胀模式。我们发现粘弹性相位角Φ可能是与生物膜膨胀动力学相关的最佳粘弹性参数。此外,我们量化了生物膜对基质水势变化的敏感性,作为ECM组成的函数。最后,我们发现ECM成分的缺失显著增加了微尺度菌落扩展模式的一致性。这些结果证明了ECM粘弹性和基质水势对空气-固体界面湿表面生物膜菌落扩张的影响,这在自然环境中常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信