Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haowen Gao, Xin Ai, Hongchun Wang, Wangqin Li, Ping Wei, Yong Cheng, Siwei Gui, Hui Yang, Yong Yang, Ming-Sheng Wang
{"title":"Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption.","authors":"Haowen Gao,&nbsp;Xin Ai,&nbsp;Hongchun Wang,&nbsp;Wangqin Li,&nbsp;Ping Wei,&nbsp;Yong Cheng,&nbsp;Siwei Gui,&nbsp;Hui Yang,&nbsp;Yong Yang,&nbsp;Ming-Sheng Wang","doi":"10.1038/s41467-022-32732-z","DOIUrl":null,"url":null,"abstract":"<p><p>Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li \"eruption\", the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm<sup>-2</sup> level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":" ","pages":"5050"},"PeriodicalIF":14.7000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420139/pdf/","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-022-32732-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 24

Abstract

Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li7La3Zr2O12 (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li "eruption", the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm-2 level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.

Abstract Image

Abstract Image

Abstract Image

锂喷发引起的gpa级界面应力下固体电解质破坏的可视化。
固体电解质有望实现高性能锂(Li)金属电池,但存在锂丝穿透问题。这种速率依赖性失效的机制,特别是锂沉积的电化学-机械攻击的影响,仍然是难以捉摸的。本文通过原位透射电镜(TEM)观察Li|Li7La3Zr2O12 (LLZO)界面演变,揭示了固体电解质中Li沉积动力学和相关失效机制。在较强的机械约束和较低的充电速率下,锂离子沉积诱导的应力使单晶锂离子在LLZO上横向扩展。然而,当Li“喷发”时,迅速积累的局部应力达到GPa以上,甚至可以使LLZO单晶颗粒破裂而无明显缺陷。相比之下,通过削弱机械约束的Li垂直生长可以在不损坏LLZO的情况下将局部电流密度提高到A·cm-2水平。结果表明,Li|LLZO界面处的裂纹萌生不仅与局部电流密度有关,还与质量/应力释放的方式和效率有关。最后,提出了在界面处实现Li快速传输和应力松弛的潜在策略,以提高固体电解质的速率能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信