In vivo molecular imaging in preclinical research.

IF 2.7 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Su Jin Kim, Ho-Young Lee
{"title":"In vivo molecular imaging in preclinical research.","authors":"Su Jin Kim,&nbsp;Ho-Young Lee","doi":"10.1186/s42826-022-00142-3","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo molecular imaging is a research field in which molecular biology and advanced imaging techniques are combined for imaging molecular-level biochemical and physiological changes that occur in a living body. For biomolecular imaging, the knowledge of molecular biology, cell biology, biochemistry, and physiology must be applied. Imaging techniques such as fluorescence, luminescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI) are used for biomolecular imaging. These imaging techniques are used in various fields, i.e., diagnosis of various diseases, development of new drugs, development of treatments, and evaluation of effects. Moreover, as biomolecular imaging can repeatedly acquire images without damaging biological tissues or sacrificing the integrity of objects, changes over time can be evaluated.Phenotypes or diseases in a living body are caused by the accumulation of various biological phenomena. Genetic differences cause biochemical and physiological differences, which accumulate and cause anatomical or structural changes. Biomolecular imaging techniques are suitable for each step. In evaluating anatomical or structural changes, MRI, CT, and ultrasound have advantages in obtaining high-resolution images. SPECT and MRI are advantageous for the evaluation of various physiological phenomena. PET and magnetic resonance spectroscopy can be used to image biochemical phenomena in vivo. Although various biomolecular imaging techniques can be used to evaluate various biological phenomena, it is important to use imaging techniques suitable for each purpose.</p>","PeriodicalId":17993,"journal":{"name":"Laboratory Animal Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585739/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-022-00142-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

In vivo molecular imaging is a research field in which molecular biology and advanced imaging techniques are combined for imaging molecular-level biochemical and physiological changes that occur in a living body. For biomolecular imaging, the knowledge of molecular biology, cell biology, biochemistry, and physiology must be applied. Imaging techniques such as fluorescence, luminescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI) are used for biomolecular imaging. These imaging techniques are used in various fields, i.e., diagnosis of various diseases, development of new drugs, development of treatments, and evaluation of effects. Moreover, as biomolecular imaging can repeatedly acquire images without damaging biological tissues or sacrificing the integrity of objects, changes over time can be evaluated.Phenotypes or diseases in a living body are caused by the accumulation of various biological phenomena. Genetic differences cause biochemical and physiological differences, which accumulate and cause anatomical or structural changes. Biomolecular imaging techniques are suitable for each step. In evaluating anatomical or structural changes, MRI, CT, and ultrasound have advantages in obtaining high-resolution images. SPECT and MRI are advantageous for the evaluation of various physiological phenomena. PET and magnetic resonance spectroscopy can be used to image biochemical phenomena in vivo. Although various biomolecular imaging techniques can be used to evaluate various biological phenomena, it is important to use imaging techniques suitable for each purpose.

Abstract Image

Abstract Image

临床前研究中的体内分子成像。
活体分子成像是将分子生物学和先进的成像技术相结合,对生物体内发生的分子水平的生化和生理变化进行成像的研究领域。对于生物分子成像,必须应用分子生物学、细胞生物学、生物化学和生理学的知识。成像技术,如荧光、发光、单光子发射计算机断层扫描(SPECT)、正电子发射断层扫描(PET)、计算机断层扫描(CT)和磁共振成像(MRI)用于生物分子成像。这些成像技术用于各种领域,即各种疾病的诊断、新药的开发、治疗方法的开发和效果的评估。此外,由于生物分子成像可以在不损害生物组织或牺牲物体完整性的情况下反复获取图像,因此可以评估随时间的变化。生物体内的表型或疾病是由各种生物现象的积累引起的。遗传差异导致生化和生理差异,这些差异累积起来导致解剖或结构的变化。生物分子成像技术适用于每一步。在评估解剖或结构变化时,MRI、CT和超声在获得高分辨率图像方面具有优势。SPECT和MRI有利于评价各种生理现象。PET和磁共振波谱可以用来成像生物体内的生化现象。虽然各种生物分子成像技术可用于评估各种生物现象,但重要的是要使用适合每种目的的成像技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
32
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信