Termination-Property Coupling via Reversible Oxygen Functionalization of MXenes

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
James L. Hart, Kanit Hantanasirisakul, Yury Gogotsi and Mitra L. Taheri*, 
{"title":"Termination-Property Coupling via Reversible Oxygen Functionalization of MXenes","authors":"James L. Hart,&nbsp;Kanit Hantanasirisakul,&nbsp;Yury Gogotsi and Mitra L. Taheri*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00024","DOIUrl":null,"url":null,"abstract":"<p >MXenes are a growing family of 2D transition-metal carbides and nitrides, which display excellent performance in myriad of applications. Theoretical calculations suggest that manipulation of the MXene surface termination (such as ═O or −F) could strongly alter their functional properties; however, experimental control of the MXene surface termination is still in the developmental stage. Here, we demonstrate that annealing MXenes in an Ar + O<sub>2</sub> low-power plasma results in increased ═O functionalization with minimal formation of secondary phases. We apply this method to two MXenes, Ti<sub>2</sub>CT<sub><i>x</i></sub> and Mo<sub>2</sub>TiC<sub>2</sub>T<sub><i>x</i></sub> (T<sub><i>x</i></sub> represents the mixed surface termination), and show that in both cases, the increased ═O content increases the electrical resistance and decreases the surface transition-metal’s electron count. For Mo<sub>2</sub>TiC<sub>2</sub>O<sub><i>x</i></sub>, we show that the O content can be reversibly altered through successive vacuum and plasma annealing. This work provides an effective way to tune MXene surface functionalization, which may unlock exciting surface-dependent properties.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/75/ng2c00024.PMC9585631.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

MXenes are a growing family of 2D transition-metal carbides and nitrides, which display excellent performance in myriad of applications. Theoretical calculations suggest that manipulation of the MXene surface termination (such as ═O or −F) could strongly alter their functional properties; however, experimental control of the MXene surface termination is still in the developmental stage. Here, we demonstrate that annealing MXenes in an Ar + O2 low-power plasma results in increased ═O functionalization with minimal formation of secondary phases. We apply this method to two MXenes, Ti2CTx and Mo2TiC2Tx (Tx represents the mixed surface termination), and show that in both cases, the increased ═O content increases the electrical resistance and decreases the surface transition-metal’s electron count. For Mo2TiC2Ox, we show that the O content can be reversibly altered through successive vacuum and plasma annealing. This work provides an effective way to tune MXene surface functionalization, which may unlock exciting surface-dependent properties.

Abstract Image

通过可逆氧官能化MXenes的终止-性质耦合
MXenes是一个不断发展的二维过渡金属碳化物和氮化物家族,在无数应用中表现出优异的性能。理论计算表明,操纵MXene表面末端(如= O或−F)可以强烈地改变它们的功能性质;然而,对MXene表面终止的实验控制仍处于发展阶段。在这里,我们证明了在Ar + O2低功率等离子体中退火MXenes导致了在最小二次相形成的情况下增加了= O功能化。我们将这种方法应用于两种MXenes, Ti2CTx和Mo2TiC2Tx (Tx代表混合表面终止),并表明在这两种情况下,增加的= O含量增加了电阻,减少了表面过渡金属的电子数。对于mo2ticox,我们发现通过连续的真空和等离子体退火可以可逆地改变O含量。这项工作提供了一种有效的方法来调整MXene表面功能化,这可能会解开令人兴奋的表面依赖性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信