{"title":"Pathophysiology, prognosis and treatment of tardive dyskinesia.","authors":"Hiroyoshi Takeuchi, Yasuhiro Mori, Yuichiro Tsutsumi","doi":"10.1177/20451253221117313","DOIUrl":null,"url":null,"abstract":"<p><p>Tardive dyskinesia (TD), a movement disorder associated with antipsychotics, most frequently affects the lower face and jaw muscles, but can also affect walking, breathing and use of the hands and limbs. Knowledge of TD among physicians may be limited, and the pathophysiology of TD is poorly understood. We conducted this review to summarise the current knowledge surrounding the pathophysiology of TD and present recommendations for prevention and treatment based on a literature search and roundtable discussion attended by psychiatrists in Japan. It has been suggested that dopamine hypersensitivity, damaged gamma-aminobutyric acidergic neurons and/or increased production of reactive oxygen species may contribute to development of TD. Symptoms can profoundly affect everyday life; patients who develop TD have poorer prognoses, worse health-related quality of life, greater social withdrawal and higher mortality than patients without TD. Traditional treatment options include dietary supplements, although evidence for their effectiveness is low. Among pharmaceutical interventions, there is moderate evidence that switching to the second-generation antipsychotic clozapine, which has a lower affinity for dopamine D<sub>2</sub> receptors than other antipsychotics, may improve symptoms. Vesicular monoamine transporter 2 (VMAT-2) inhibitors, which oppose the increased dopaminergic activity associated with prolonged antipsychotic use by interfering with dopamine uptake and storage, have the strongest evidence for efficacy. VMAT-2 inhibitors are approved in the United States for the treatment of TD, and the first VMAT-2 inhibitor was approved in Japan for this indication in March 2022. Most guidelines recommend treating TD by first reducing the dose of antipsychotics or switching to clozapine or other second-generation antipsychotics, which have a lower association with TD than first-generation antipsychotics. We recommend focusing on prevention and monitoring for TD when prescribing antipsychotics, given that TD is often irreversible. Physicians should treat with antipsychotics only when necessary and at the lowest effective dose, and frequently monitor for TD symptoms.</p><p><strong>Plain language summary: </strong><b>Plain Language Summary (In Japanese)</b>.</p><p><strong>Visual summary: </strong><b>Visual Summary (In Japanese)</b>.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"20451253221117313"},"PeriodicalIF":4.3000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/90/10.1177_20451253221117313.PMC9597038.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20451253221117313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tardive dyskinesia (TD), a movement disorder associated with antipsychotics, most frequently affects the lower face and jaw muscles, but can also affect walking, breathing and use of the hands and limbs. Knowledge of TD among physicians may be limited, and the pathophysiology of TD is poorly understood. We conducted this review to summarise the current knowledge surrounding the pathophysiology of TD and present recommendations for prevention and treatment based on a literature search and roundtable discussion attended by psychiatrists in Japan. It has been suggested that dopamine hypersensitivity, damaged gamma-aminobutyric acidergic neurons and/or increased production of reactive oxygen species may contribute to development of TD. Symptoms can profoundly affect everyday life; patients who develop TD have poorer prognoses, worse health-related quality of life, greater social withdrawal and higher mortality than patients without TD. Traditional treatment options include dietary supplements, although evidence for their effectiveness is low. Among pharmaceutical interventions, there is moderate evidence that switching to the second-generation antipsychotic clozapine, which has a lower affinity for dopamine D2 receptors than other antipsychotics, may improve symptoms. Vesicular monoamine transporter 2 (VMAT-2) inhibitors, which oppose the increased dopaminergic activity associated with prolonged antipsychotic use by interfering with dopamine uptake and storage, have the strongest evidence for efficacy. VMAT-2 inhibitors are approved in the United States for the treatment of TD, and the first VMAT-2 inhibitor was approved in Japan for this indication in March 2022. Most guidelines recommend treating TD by first reducing the dose of antipsychotics or switching to clozapine or other second-generation antipsychotics, which have a lower association with TD than first-generation antipsychotics. We recommend focusing on prevention and monitoring for TD when prescribing antipsychotics, given that TD is often irreversible. Physicians should treat with antipsychotics only when necessary and at the lowest effective dose, and frequently monitor for TD symptoms.
Plain language summary: Plain Language Summary (In Japanese).
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico