Kyeong-Dae Kim, Jeong Min Choe, Soomin Myoung, Seung Hyun Lee, Minkyu Kim, Jae-Hoon Choi, Hyun Tae Park
{"title":"Estradiol treatment increases M2-like visceral adipose tissue macrophages in obese ovariectomized mice regardless of its anorectic action.","authors":"Kyeong-Dae Kim, Jeong Min Choe, Soomin Myoung, Seung Hyun Lee, Minkyu Kim, Jae-Hoon Choi, Hyun Tae Park","doi":"10.1080/19768354.2022.2128871","DOIUrl":null,"url":null,"abstract":"<p><p>Estradiol (E2) treatment has been known to induce changes in food intake, energy expenditure, and weight gain. However, its direct effects on adipose tissue macrophages (ATM) in vivo are not fully understood. Thus, we aimed to explore this aspect at cellular and molecular levels in ovariectomized obese mice. We examined the changes in ATMs after eight weeks of a high-fat diet (HFD) in male, female, and ovariectomized (OVX) mice. After eight weeks, osmotic pumps were inserted into OVX mice to provide two weeks of E2 treatment. We additionally set up a vehicle Pair-Fed (PF) control group that supplied the same amount of HFD consumed by the E2-treated group. We then investigated the in vivo phenotypic changes of visceral adipose tissue (VAT) macrophages. The percentage of M1-like ATMs decreased by the anorectic effect of E2, while M2-like ATMs increased regardless of the anorexia. E2 treatment increased the expression of anti-inflammatory genes but decreased pro-inflammatory genes in VAT. Monocyte recruitment and local proliferation contributed to M2-like ATMs. Furthermore, M2-like phenotypes were induced by E2 treatment in human macrophages. E2 treatment increases M2-like macrophages and improves the tissue milieu of VAT regardless of the anorectic reaction of E2.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/16/TACS_26_2128871.PMC9586618.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2022.2128871","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estradiol (E2) treatment has been known to induce changes in food intake, energy expenditure, and weight gain. However, its direct effects on adipose tissue macrophages (ATM) in vivo are not fully understood. Thus, we aimed to explore this aspect at cellular and molecular levels in ovariectomized obese mice. We examined the changes in ATMs after eight weeks of a high-fat diet (HFD) in male, female, and ovariectomized (OVX) mice. After eight weeks, osmotic pumps were inserted into OVX mice to provide two weeks of E2 treatment. We additionally set up a vehicle Pair-Fed (PF) control group that supplied the same amount of HFD consumed by the E2-treated group. We then investigated the in vivo phenotypic changes of visceral adipose tissue (VAT) macrophages. The percentage of M1-like ATMs decreased by the anorectic effect of E2, while M2-like ATMs increased regardless of the anorexia. E2 treatment increased the expression of anti-inflammatory genes but decreased pro-inflammatory genes in VAT. Monocyte recruitment and local proliferation contributed to M2-like ATMs. Furthermore, M2-like phenotypes were induced by E2 treatment in human macrophages. E2 treatment increases M2-like macrophages and improves the tissue milieu of VAT regardless of the anorectic reaction of E2.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.