Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: possible role of vegfr-2/akt-1 signaling pathway.
Nesa Janamo Berenjabad, Vahid Nejati, Jafar Rezaie
{"title":"Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: possible role of vegfr-2/akt-1 signaling pathway.","authors":"Nesa Janamo Berenjabad, Vahid Nejati, Jafar Rezaie","doi":"10.1186/s12860-022-00435-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many attempts are used to discover mechanisms driving impaired angiogenesis in age-related diseases. Angiogenesis is highly regulated by different signaling pathways. Here, we investigated the angiogenesis potential of human endothelial cells (ECs) upon exposure to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a cellular senescent factor.</p><p><strong>Results: </strong>Data showed that the wound healing rate of HUVECs decreased upon incubation with H<sub>2</sub>O<sub>2</sub> (P < 0.05). LOX activity and NO production were decreased in H<sub>2</sub>O<sub>2</sub> treated cells (P < 0.05). Expression of miR-126 and VEGFR-2 up-regulated, while expression of miR-373 and HSP-70 up = regulated in H<sub>2</sub>O<sub>2</sub> -induced cells (P < 0.05). In addition, we found that protein levels of p-Akt-1, VCAM-1, MMP-9, and IL-6 decreased in treated cells (P < 0.05).</p><p><strong>Conclusions: </strong>Our data showed that H<sub>2</sub>O<sub>2</sub> reduced the angiogenic response of HUVECs in vitro, which may be due to impairment of the VEGFR-2 signaling pathway.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"31"},"PeriodicalIF":4.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310472/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-022-00435-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Many attempts are used to discover mechanisms driving impaired angiogenesis in age-related diseases. Angiogenesis is highly regulated by different signaling pathways. Here, we investigated the angiogenesis potential of human endothelial cells (ECs) upon exposure to hydrogen peroxide (H2O2), a cellular senescent factor.
Results: Data showed that the wound healing rate of HUVECs decreased upon incubation with H2O2 (P < 0.05). LOX activity and NO production were decreased in H2O2 treated cells (P < 0.05). Expression of miR-126 and VEGFR-2 up-regulated, while expression of miR-373 and HSP-70 up = regulated in H2O2 -induced cells (P < 0.05). In addition, we found that protein levels of p-Akt-1, VCAM-1, MMP-9, and IL-6 decreased in treated cells (P < 0.05).
Conclusions: Our data showed that H2O2 reduced the angiogenic response of HUVECs in vitro, which may be due to impairment of the VEGFR-2 signaling pathway.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.