Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: possible role of vegfr-2/akt-1 signaling pathway.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nesa Janamo Berenjabad, Vahid Nejati, Jafar Rezaie
{"title":"Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: possible role of vegfr-2/akt-1 signaling pathway.","authors":"Nesa Janamo Berenjabad,&nbsp;Vahid Nejati,&nbsp;Jafar Rezaie","doi":"10.1186/s12860-022-00435-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many attempts are used to discover mechanisms driving impaired angiogenesis in age-related diseases. Angiogenesis is highly regulated by different signaling pathways. Here, we investigated the angiogenesis potential of human endothelial cells (ECs) upon exposure to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a cellular senescent factor.</p><p><strong>Results: </strong>Data showed that the wound healing rate of HUVECs decreased upon incubation with H<sub>2</sub>O<sub>2</sub> (P < 0.05). LOX activity and NO production were decreased in H<sub>2</sub>O<sub>2</sub> treated cells (P < 0.05). Expression of miR-126 and VEGFR-2 up-regulated, while expression of miR-373 and HSP-70 up = regulated in H<sub>2</sub>O<sub>2</sub> -induced cells (P < 0.05). In addition, we found that protein levels of p-Akt-1, VCAM-1, MMP-9, and IL-6 decreased in treated cells (P < 0.05).</p><p><strong>Conclusions: </strong>Our data showed that H<sub>2</sub>O<sub>2</sub> reduced the angiogenic response of HUVECs in vitro, which may be due to impairment of the VEGFR-2 signaling pathway.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"31"},"PeriodicalIF":4.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310472/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-022-00435-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

Background: Many attempts are used to discover mechanisms driving impaired angiogenesis in age-related diseases. Angiogenesis is highly regulated by different signaling pathways. Here, we investigated the angiogenesis potential of human endothelial cells (ECs) upon exposure to hydrogen peroxide (H2O2), a cellular senescent factor.

Results: Data showed that the wound healing rate of HUVECs decreased upon incubation with H2O2 (P < 0.05). LOX activity and NO production were decreased in H2O2 treated cells (P < 0.05). Expression of miR-126 and VEGFR-2 up-regulated, while expression of miR-373 and HSP-70 up = regulated in H2O2 -induced cells (P < 0.05). In addition, we found that protein levels of p-Akt-1, VCAM-1, MMP-9, and IL-6 decreased in treated cells (P < 0.05).

Conclusions: Our data showed that H2O2 reduced the angiogenic response of HUVECs in vitro, which may be due to impairment of the VEGFR-2 signaling pathway.

Abstract Image

Abstract Image

Abstract Image

过氧化氢诱导衰老后,人内皮细胞的血管生成能力下降:可能与vegfr-2/akt-1信号通路有关。
背景:许多研究试图发现衰老相关疾病中血管生成受损的机制。血管生成受不同信号通路的高度调控。在这里,我们研究了暴露于过氧化氢(H2O2)(一种细胞衰老因子)后人内皮细胞(ECs)的血管生成潜力。结果:数据显示H2O2 (p2o2)处理细胞(p2o2)诱导的HUVECs伤口愈合速率降低。结论:我们的数据显示H2O2降低了HUVECs体外血管生成反应,这可能与VEGFR-2信号通路受损有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信