Mario A. Quiroz-Juárez, Ángel L. Corps, Rafael A. Molina, Armando Relaño, José L. Aragón, Roberto de J. León-Montiel, Jorge G. Hirsch
{"title":"Experimental observation of phase transitions of a deformed Dicke model using a reconfigurable, bi-parametric electronic platform","authors":"Mario A. Quiroz-Juárez, Ángel L. Corps, Rafael A. Molina, Armando Relaño, José L. Aragón, Roberto de J. León-Montiel, Jorge G. Hirsch","doi":"10.1140/epjp/s13360-023-04391-6","DOIUrl":null,"url":null,"abstract":"<div><p>We experimentally study the infinite-size limit of the Dicke model of quantum optics with a parity-breaking deformation strength that couples the system to an external bosonic reservoir. We focus on the dynamical consequences of such symmetry breaking, which makes the classical phase space asymmetric with non-equivalent energy wells. We present an experimental implementation of the classical version of the deformed Dicke model using a state-of-the-art bi-parametric electronic platform. Our platform constitutes a playground for studying representative phenomena of the deformed Dicke model in electrical circuits with the possibility of externally controlling parameters and initial conditions. In particular, we investigate the dynamics of the ground state, various phase transitions and the asymmetry of the energy wells as a function of the coupling strength <span>\\(\\gamma \\)</span> and the deformation strength <span>\\(\\alpha \\)</span> in the resonant case. Additionally, to characterize the various behavior regimes, we present a two-dimensional phase diagram as a function of the two intrinsic system parameters. The onset of chaos is also analyzed experimentally. Our findings provide a clear connection between theoretical predictions and experimental observations, demonstrating the usefulness of our bi-parametric electronic setup.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"138 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04391-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-023-04391-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally study the infinite-size limit of the Dicke model of quantum optics with a parity-breaking deformation strength that couples the system to an external bosonic reservoir. We focus on the dynamical consequences of such symmetry breaking, which makes the classical phase space asymmetric with non-equivalent energy wells. We present an experimental implementation of the classical version of the deformed Dicke model using a state-of-the-art bi-parametric electronic platform. Our platform constitutes a playground for studying representative phenomena of the deformed Dicke model in electrical circuits with the possibility of externally controlling parameters and initial conditions. In particular, we investigate the dynamics of the ground state, various phase transitions and the asymmetry of the energy wells as a function of the coupling strength \(\gamma \) and the deformation strength \(\alpha \) in the resonant case. Additionally, to characterize the various behavior regimes, we present a two-dimensional phase diagram as a function of the two intrinsic system parameters. The onset of chaos is also analyzed experimentally. Our findings provide a clear connection between theoretical predictions and experimental observations, demonstrating the usefulness of our bi-parametric electronic setup.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.