Shen Ren, Zhiquan Shu, Jiaji Pan, Ziyuan Wang, Ruidong Ma, Ji Peng, Ming Chen, Dayong Gao
{"title":"Single-Mode Electromagnetic Resonance Rewarming for the Cryopreservation of Samples with Large Volumes: A Numerical and Experimental Study.","authors":"Shen Ren, Zhiquan Shu, Jiaji Pan, Ziyuan Wang, Ruidong Ma, Ji Peng, Ming Chen, Dayong Gao","doi":"10.1089/bio.2022.0107","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and uniform rewarming has been proved to be beneficial, and sometimes indispensable for the survival of cryopreserved biomaterials, inhibiting ice-recrystallization-devitrification and thermal stress-induced fracture (especially in large samples). To date, the convective water bath remains the gold standard rewarming method for small samples in the clinical settings, but it failed in the large samples (e.g., cryopreserved tissues and organs) due to damage caused by the slow and nonuniform heating. A single-mode electromagnetic resonance (SMER) system was developed to achieve ultrafast and uniform rewarming for large samples. In this study, we investigated the heating effects of the SMER system and compared the heating performance with water bath and air warming. A numerical model was established to further analyze the temperature change and distribution at different time points during the rewarming process. Overall, the SMER system achieved rapid heating at 331.63 ± 8.59°C min<sup>-1</sup> while limiting the maximum thermal gradient to <9°C min<sup>-1</sup>, significantly better than the other two warming methods. The experimental results were highly consistent, indicating SMER is a promising rewarming technology for the successful cryopreservation of large biosamples.</p>","PeriodicalId":49231,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"317-322"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2022.0107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Rapid and uniform rewarming has been proved to be beneficial, and sometimes indispensable for the survival of cryopreserved biomaterials, inhibiting ice-recrystallization-devitrification and thermal stress-induced fracture (especially in large samples). To date, the convective water bath remains the gold standard rewarming method for small samples in the clinical settings, but it failed in the large samples (e.g., cryopreserved tissues and organs) due to damage caused by the slow and nonuniform heating. A single-mode electromagnetic resonance (SMER) system was developed to achieve ultrafast and uniform rewarming for large samples. In this study, we investigated the heating effects of the SMER system and compared the heating performance with water bath and air warming. A numerical model was established to further analyze the temperature change and distribution at different time points during the rewarming process. Overall, the SMER system achieved rapid heating at 331.63 ± 8.59°C min-1 while limiting the maximum thermal gradient to <9°C min-1, significantly better than the other two warming methods. The experimental results were highly consistent, indicating SMER is a promising rewarming technology for the successful cryopreservation of large biosamples.
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.