Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection.

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Huiru Mao, Longmei Yu, Ming Tu, Shuning Wang, Jing Zhao, Haiyun Zhang, Ya Cao
{"title":"Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection.","authors":"Huiru Mao, Longmei Yu, Ming Tu, Shuning Wang, Jing Zhao, Haiyun Zhang, Ya Cao","doi":"10.1080/10408347.2022.2111197","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2111197","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.

基于金属有机框架的癌症生物标记物检测生物传感方法的最新进展。
癌症是世界上最危险的疾病之一,对癌症生物标志物的灵敏和选择性检测对于癌症的早期诊断和治疗至关重要。金属有机框架(MOFs)是通过金属离子/团簇和有机配体组装而成的一类混合多孔材料,具有尺寸可调、孔隙率高、比表面积大和易于改性等优点,在癌症生物标志物的传感方面引起了越来越多的关注。利用 MOFs 不仅可以制造活性传感界面,还可以产生各种可测量的信号。在基于 MOF 的生物传感策略中,已经应用了几种具有代表性的分析技术,以确保对癌症生物标志物的高检测灵敏度,如荧光、电化学、电化学发光、光化学和比色法。在本综述中,我们总结了近三年来基于金属节点类别的 MOFs 生物传感策略在检测癌症生物标志物方面的最新进展,旨在为开发用于临床诊断的创新型生物传感平台提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信