Kathrin C J Eschmann, Lisa Riedel, Axel Mecklinger
{"title":"Theta Neurofeedback Training Supports Motor Performance and Flow Experience.","authors":"Kathrin C J Eschmann, Lisa Riedel, Axel Mecklinger","doi":"10.1007/s41465-021-00236-1","DOIUrl":null,"url":null,"abstract":"<p><p>Flow is defined as a cognitive state that is associated with a feeling of automatic and effortless control, enabling peak performance in highly challenging situations. In sports, flow can be enhanced by mindfulness training, which has been associated with frontal theta activity (4-8 Hz). Moreover, frontal-midline theta oscillations were shown to subserve control processes in a large variety of cognitive tasks. Based on previous theta neurofeedback training studies, which revealed that one training session is sufficient to enhance motor performance, the present study investigated whether one 30-minute session of frontal-midline theta neurofeedback training (1) enhances flow experience additionally to motor performance in a finger tapping task, and (2) transfers to cognitive control processes in an <i>n</i>-back task. Participants, who were able to successfully upregulate their theta activity during neurofeedback training (responders), showed better motor performance and flow experience after training than participants, who did not enhance their theta activity (non-responders). Across all participants, increase of theta activity during training was associated with motor performance enhancement from pretest to posttest irrespective of pre-training performance. Interestingly, theta training gains were also linked to the increase of flow experience, even when corresponding increases in motor performance were controlled for. Results for the <i>n</i>-back task were not significant. Even though these findings are mainly correlational in nature and additional flow-promoting influences need to be investigated, the present findings suggest that frontal-midline theta neurofeedback training is a promising tool to support flow experience with additional relevance for performance enhancement.</p>","PeriodicalId":73678,"journal":{"name":"Journal of cognitive enhancement : towards the integration of theory and practice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360146/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cognitive enhancement : towards the integration of theory and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41465-021-00236-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Flow is defined as a cognitive state that is associated with a feeling of automatic and effortless control, enabling peak performance in highly challenging situations. In sports, flow can be enhanced by mindfulness training, which has been associated with frontal theta activity (4-8 Hz). Moreover, frontal-midline theta oscillations were shown to subserve control processes in a large variety of cognitive tasks. Based on previous theta neurofeedback training studies, which revealed that one training session is sufficient to enhance motor performance, the present study investigated whether one 30-minute session of frontal-midline theta neurofeedback training (1) enhances flow experience additionally to motor performance in a finger tapping task, and (2) transfers to cognitive control processes in an n-back task. Participants, who were able to successfully upregulate their theta activity during neurofeedback training (responders), showed better motor performance and flow experience after training than participants, who did not enhance their theta activity (non-responders). Across all participants, increase of theta activity during training was associated with motor performance enhancement from pretest to posttest irrespective of pre-training performance. Interestingly, theta training gains were also linked to the increase of flow experience, even when corresponding increases in motor performance were controlled for. Results for the n-back task were not significant. Even though these findings are mainly correlational in nature and additional flow-promoting influences need to be investigated, the present findings suggest that frontal-midline theta neurofeedback training is a promising tool to support flow experience with additional relevance for performance enhancement.