Hawkar J. Muhammed, Márton Benke, Dániel Koncz-Horváth, Zsolt Sályi, Tamás I. Török
{"title":"Characterization of Hot-Dip Aluminized C45 Carbon Steel before and after Cyclic Heating in Air","authors":"Hawkar J. Muhammed, Márton Benke, Dániel Koncz-Horváth, Zsolt Sályi, Tamás I. Török","doi":"10.3103/S1068375521040116","DOIUrl":null,"url":null,"abstract":"<p>An experimental study has been carried out on the surface characteristics of hot-dip aluminized (HDA) C45 carbon steel. The coated specimens were also tested thrice by cycling heat between the ambient temperature and 700°C inside an electrical resistance furnace. Both the as-coated and the oxidized samples were analyzed by scanning electron microscopy, energy dispersive spectrometry, and elemental mapping. Microstructural features and other important characteristics (compositional changes, chemical elemental distributions, growth of the intermetallic phases, the formation of micro-voids, etc.) were investigated. Under the high temperature tested conditions, the HDA coated C45 carbon steel close-to-surface top-layer almost entirely converted to iron-aluminum intermetallics, with Fe to Al atomic ratios of 1 to 2 corresponding to the phases FeAl and FeAl<sub>2</sub>. However, the innermost intermetallic phase (FeAl) formed between the finger-like structure and the steel substrate appeared quite compact and sound (without voids, micro-crack, and internal iron oxide scale), which is a convincing sign and an experimental proof of a high chemical and mechanical stability of such type of surface coatings. The results confirm that even inexpensive carbon steel, if properly aluminized, can provide sufficient protection against excessive oxide scale formation in the air at high temperatures.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"57 4","pages":"431 - 438"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375521040116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2
Abstract
An experimental study has been carried out on the surface characteristics of hot-dip aluminized (HDA) C45 carbon steel. The coated specimens were also tested thrice by cycling heat between the ambient temperature and 700°C inside an electrical resistance furnace. Both the as-coated and the oxidized samples were analyzed by scanning electron microscopy, energy dispersive spectrometry, and elemental mapping. Microstructural features and other important characteristics (compositional changes, chemical elemental distributions, growth of the intermetallic phases, the formation of micro-voids, etc.) were investigated. Under the high temperature tested conditions, the HDA coated C45 carbon steel close-to-surface top-layer almost entirely converted to iron-aluminum intermetallics, with Fe to Al atomic ratios of 1 to 2 corresponding to the phases FeAl and FeAl2. However, the innermost intermetallic phase (FeAl) formed between the finger-like structure and the steel substrate appeared quite compact and sound (without voids, micro-crack, and internal iron oxide scale), which is a convincing sign and an experimental proof of a high chemical and mechanical stability of such type of surface coatings. The results confirm that even inexpensive carbon steel, if properly aluminized, can provide sufficient protection against excessive oxide scale formation in the air at high temperatures.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.