Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Katta Ramesh, Dharmendra Tripathi, Muhammad Mubashir Bhatti, Kaouther Ghachem, Sami Ullah Khan, Lioua Kolsi
{"title":"Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.","authors":"Katta Ramesh,&nbsp;Dharmendra Tripathi,&nbsp;Muhammad Mubashir Bhatti,&nbsp;Kaouther Ghachem,&nbsp;Sami Ullah Khan,&nbsp;Lioua Kolsi","doi":"10.1177/22808000221114708","DOIUrl":null,"url":null,"abstract":"<p><p>Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: <math><mrow><mn>0</mn><mo><</mo><mi>κ</mi><mo><</mo><mn>6</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>λ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo><</mo><mi>M</mi><mo><</mo><mn>8</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>1</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo><</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>B</mi><mi>r</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>R</mi><mi>n</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>and</mi><mspace></mspace><mn>0</mn><mo><</mo><mi>ϕ</mi><mo><</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>.</mo></mrow></math>The current results reveal that, A stronger magnetic field leads the enhancement in nanoparticle temperature and shear stress, and it reduces the velocity and trapping bolus. The nanoparticle temperature rises with the increasing parameters such as Brinkman number and Joule heating parameter.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000221114708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: 0<κ<6,0<λ1<0.6,2<M<8,0<ζ1<3,0<ζ2<3,0.1<ϕ1<0.4,0<Br<3,0<β<3,0<Rn<0.3and0<ϕ<π/2.The current results reveal that, A stronger magnetic field leads the enhancement in nanoparticle temperature and shear stress, and it reduces the velocity and trapping bolus. The nanoparticle temperature rises with the increasing parameters such as Brinkman number and Joule heating parameter.

电磁流体动力学生物纳米材料生理血管流动的数学建模与仿真。
金基金属纳米粒子在诊断和治疗癌症和传染病等重要疾病方面发挥着关键作用。考虑到这一点,本工作建立了粘弹性纳米流体在蠕动微通道中流动的数学模型。纳米流体被认为是一种悬浮在金纳米颗粒上的血基流体。在所研究的几何结构中,各种参数效应,如焦耳加热、磁流体动力学、电渗透和热辐射已经被施加。利用润滑理论解析求解了该模型的控制方程,其中考虑了通道的波长较大,并且考虑了黏性力比惯性力更占优势,与生物输运现象相关的应用。给出了相关参数的图形结果。在当前的分析中,参数的范围被认为是:0κ6,0λ10.6,2M8,0ζ13,0ζ23,0.1ϕ10.4,0Br3,0β3,0 rn0.3和0ϕπ/2。结果表明:磁场越强,纳米粒子的温度和剪切应力越高,速度和捕获量也越小;随着布林克曼数和焦耳加热参数的增加,纳米颗粒温度升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信