A unified approach of detecting misleading images via tracing its instances on web and analyzing its past context for the verification of multimedia content.
IF 3.6 3区 计算机科学Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"A unified approach of detecting misleading images via tracing its instances on web and analyzing its past context for the verification of multimedia content.","authors":"Deepika Varshney, Dinesh Kumar Vishwakarma","doi":"10.1007/s13735-022-00235-8","DOIUrl":null,"url":null,"abstract":"<p><p>The verification of multimedia content over social media is one of the challenging and crucial issues in the current scenario and gaining prominence in an age where user-generated content and online social web-platforms are the leading sources in shaping and propagating news stories. As these sources allow users to share their opinions without restriction, opportunistic users often post misleading/unreliable content on social media such as Twitter, Facebook, etc. At present, to lure users toward the news story, the text is often attached with some multimedia content (images/videos/audios). Verifying these contents to maintain the credibility and reliability of social media information is of paramount importance. Motivated by this, we proposed a generalized system that supports the automatic classification of images into credible or misleading. In this paper, we investigated machine learning-based as well as deep learning-based approaches utilized to verify misleading multimedia content, where the available image traces are used to identify the credibility of the content. The experiment is performed on the real-world dataset (Media-eval-2015 dataset) collected from Twitter. It also demonstrates the efficiency of our proposed approach and features using both Machine and Deep Learning Model (Bi-directional LSTM). The experiment result reveals that the Microsoft BING image search engine is quite effective in retrieving titles and performs better than our study's Google image search engine. It also shows that gathering clues from attached multimedia content (image) is more effective than detecting only posted content-based features.</p>","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":" ","pages":"445-459"},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272873/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multimedia Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13735-022-00235-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
The verification of multimedia content over social media is one of the challenging and crucial issues in the current scenario and gaining prominence in an age where user-generated content and online social web-platforms are the leading sources in shaping and propagating news stories. As these sources allow users to share their opinions without restriction, opportunistic users often post misleading/unreliable content on social media such as Twitter, Facebook, etc. At present, to lure users toward the news story, the text is often attached with some multimedia content (images/videos/audios). Verifying these contents to maintain the credibility and reliability of social media information is of paramount importance. Motivated by this, we proposed a generalized system that supports the automatic classification of images into credible or misleading. In this paper, we investigated machine learning-based as well as deep learning-based approaches utilized to verify misleading multimedia content, where the available image traces are used to identify the credibility of the content. The experiment is performed on the real-world dataset (Media-eval-2015 dataset) collected from Twitter. It also demonstrates the efficiency of our proposed approach and features using both Machine and Deep Learning Model (Bi-directional LSTM). The experiment result reveals that the Microsoft BING image search engine is quite effective in retrieving titles and performs better than our study's Google image search engine. It also shows that gathering clues from attached multimedia content (image) is more effective than detecting only posted content-based features.
期刊介绍:
Aims and Scope
The International Journal of Multimedia Information Retrieval (IJMIR) is a scholarly archival journal publishing original, peer-reviewed research contributions. Its editorial board strives to present the most important research results in areas within the field of multimedia information retrieval. Core areas include exploration, search, and mining in general collections of multimedia consisting of information from the WWW to scientific imaging to personal archives. Comprehensive review and survey papers that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
Relevant topics include
Image and video retrieval - theory, algorithms, and systems
Social media interaction and retrieval - collaborative filtering, social voting and ranking
Music and audio retrieval - theory, algorithms, and systems
Scientific and Bio-imaging - MRI, X-ray, ultrasound imaging analysis and retrieval
Semantic learning - visual concept detection, object recognition, and tag learning
Exploration of media archives - browsing, experiential computing
Interfaces - multimedia exploration, visualization, query and retrieval
Multimedia mining - life logs, WWW media mining, pervasive media analysis
Interactive search - interactive learning and relevance feedback in multimedia retrieval
Distributed and high performance media search - efficient and very large scale search
Applications - preserving cultural heritage, 3D graphics models, etc.
Editorial Policies:
We aim for a fast decision time (less than 4 months for the initial decision)
There are no page charges in IJMIR.
Papers are published on line in advance of print publication.
Academic, industrial researchers, and practitioners involved with multimedia search, exploration, and mining will find IJMIR to be an essential source for important results in the field.