Sunitinib Reduced the Migration of Ectopic Endometrial Cells via p-VEGFR-PI3K-AKT-YBX1-Snail Signaling Pathway.

IF 2.6 4区 医学 Q3 CELL BIOLOGY
Analytical Cellular Pathology Pub Date : 2022-06-30 eCollection Date: 2022-01-01 DOI:10.1155/2022/6042518
Xiaodan Fan, Yanyan Tong, Yiting Chen, Yichen Chen
{"title":"Sunitinib Reduced the Migration of Ectopic Endometrial Cells via p-VEGFR-PI3K-AKT-YBX1-Snail Signaling Pathway.","authors":"Xiaodan Fan,&nbsp;Yanyan Tong,&nbsp;Yiting Chen,&nbsp;Yichen Chen","doi":"10.1155/2022/6042518","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis (EMs) is one of the most common gynecological diseases, lacking effective treatment. EMs are currently being treated with small molecule targeted therapy, which has resulted in a significant reduction in patient suffering. Our previous studies have shown that sunitinib plays an obvious role in migration. Consequently, the purpose of this study is to explore the molecular mechanism by which sunitinib suppressed the ectopic endometrial migration. The ectopic endometrial cells from patients were divided into two groups: the control group and the sunitinib group. Co-IP and protein spectrum assay were employed to filtrate differential proteins between two groups, and then, our study discovered a signaling pathway, p-VEGFR-PI3K-AKT-YBX1-Snail, in the cell of EMs. To confirm this signaling pathway, VEGF165 was added to the sunitinib group to upregulate the expression of VEGFR. Next, the expression of p-VEGFR, PI3K, AKT, YBX1, and snail was measured in the control group and sunitinib group (compared with the control group: p-VEGFR, PI3K, AKT, YBX1, and snail, ∗∗∗∗<i>P</i> < 0.0001) and the VEGFR+sunitinib group (compared with the sunitinib group: p-VEGFR, PI3K, AKT, and snail, ∗∗∗∗<i>P</i> < 0.0001; YBX1, ∗∗∗<i>P</i> < 0.001); finally, the outcome was as expected. In addition to in vitro experiments, we also conducted in vivo experiments in mice. In the EMs mouse model, we found sunitinib reduced the number of heterotopic foci (<i>t</i> = 11.16, ∗∗∗∗<i>P</i> < 0.0001) and inhibited the expression of p-VEGFR, YBX1, and snail by immunofluorescence. To sum up, sunitinib exactly reduced the migration of ectopic endometrial cells with the involvement of the p-VEGFR-PI3K-AKT-YBX1-Snail signaling pathway in both in vitro and in vivo experiments. This study suggests that sunitinib presents a potential targeted drug for EMs therapy.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/6042518","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometriosis (EMs) is one of the most common gynecological diseases, lacking effective treatment. EMs are currently being treated with small molecule targeted therapy, which has resulted in a significant reduction in patient suffering. Our previous studies have shown that sunitinib plays an obvious role in migration. Consequently, the purpose of this study is to explore the molecular mechanism by which sunitinib suppressed the ectopic endometrial migration. The ectopic endometrial cells from patients were divided into two groups: the control group and the sunitinib group. Co-IP and protein spectrum assay were employed to filtrate differential proteins between two groups, and then, our study discovered a signaling pathway, p-VEGFR-PI3K-AKT-YBX1-Snail, in the cell of EMs. To confirm this signaling pathway, VEGF165 was added to the sunitinib group to upregulate the expression of VEGFR. Next, the expression of p-VEGFR, PI3K, AKT, YBX1, and snail was measured in the control group and sunitinib group (compared with the control group: p-VEGFR, PI3K, AKT, YBX1, and snail, ∗∗∗∗P < 0.0001) and the VEGFR+sunitinib group (compared with the sunitinib group: p-VEGFR, PI3K, AKT, and snail, ∗∗∗∗P < 0.0001; YBX1, ∗∗∗P < 0.001); finally, the outcome was as expected. In addition to in vitro experiments, we also conducted in vivo experiments in mice. In the EMs mouse model, we found sunitinib reduced the number of heterotopic foci (t = 11.16, ∗∗∗∗P < 0.0001) and inhibited the expression of p-VEGFR, YBX1, and snail by immunofluorescence. To sum up, sunitinib exactly reduced the migration of ectopic endometrial cells with the involvement of the p-VEGFR-PI3K-AKT-YBX1-Snail signaling pathway in both in vitro and in vivo experiments. This study suggests that sunitinib presents a potential targeted drug for EMs therapy.

Abstract Image

Abstract Image

Abstract Image

舒尼替尼通过p-VEGFR-PI3K-AKT-YBX1-Snail信号通路减少异位子宫内膜细胞的迁移
子宫内膜异位症是最常见的妇科疾病之一,缺乏有效的治疗方法。目前,EMs正在接受小分子靶向治疗,这大大减少了患者的痛苦。我们之前的研究表明,舒尼替尼在迁移中有明显的作用。因此,本研究的目的是探讨舒尼替尼抑制异位子宫内膜迁移的分子机制。将患者异位子宫内膜细胞分为两组:对照组和舒尼替尼组。采用Co-IP和蛋白谱法对两组差异蛋白进行筛选,发现EMs细胞中存在p-VEGFR-PI3K-AKT-YBX1-Snail信号通路。为了证实这一信号通路,我们在舒尼替尼组中加入VEGF165上调VEGFR的表达。接下来,测量对照组和舒尼替尼组(与对照组相比:P -VEGFR、PI3K、AKT、YBX1和蜗牛,∗∗∗P < 0.0001)和VEGFR+舒尼替尼组(与舒尼替尼组相比:P -VEGFR、PI3K、AKT、AKT和蜗牛,∗∗∗P < 0.0001;Ybx1, * * * p < 0.001);最后,结果如预期的那样。除了体外实验,我们还对小鼠进行了体内实验。在EMs小鼠模型中,我们发现舒尼替尼减少了异位灶的数量(t = 11.16,∗∗∗P < 0.0001),并通过免疫荧光法抑制了P - vegfr、YBX1和snail的表达。综上所述,在体外和体内实验中,舒尼替尼都通过参与p-VEGFR-PI3K-AKT-YBX1-Snail信号通路,准确地减少了异位子宫内膜细胞的迁移。本研究提示舒尼替尼是EMs治疗的潜在靶向药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信