{"title":"Purification of Therapeutic Serums of Snake Anti-Venom with Caprylic Acid.","authors":"Nilofar Norouznejad, Hossein Zolfagharian, Mahdi Babaie, Maryam Ghobeh","doi":"10.3831/KPI.2022.25.2.114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Antivenom serums have been used extensively for over a century and are the only effective treatment option for snake bites and other dangerous animal envenomations. In therapeutic serum centers, a wide range of antivenoms is made from animal serum, mainly equine and sheep, that are immunized with single or multiple venoms. This work aimed to use caprylic acid (CA) to purify therapeutic snake antivenom.</p><p><strong>Methods: </strong>Plasma was obtained from equine immunized with a mixture of venoms. Immunized plasma was obtained by precipitation of different concentrations (2-5%) of CA. This methodology was compared to that based on ammonium sulfate (AS) precipitation. Sediment plasma proteins were purified by ion-exchange chromatography. Protein assay, SDS-PAGE, and agar gel diffusion were performed.</p><p><strong>Results: </strong>The total protein precipitation with AS was higher than precipitation with CA, but the best results were obtained when CA was added to the plasma until a final CA concentration of 5% was reached. Chromatography and electrophoresis indicated a stronger band for the 5% CA, and the gel diffusion assay showed antigen-antibody interaction in the purified serum.</p><p><strong>Conclusion: </strong>The use of CA compared to the routine method for purifying hyperimmune serums is a practical and cost-effective method for preparing and producing therapeutic serums. It constitutes a potentially valuable technology for alleviating the critical shortage of antivenom in Iran.</p>","PeriodicalId":16769,"journal":{"name":"Journal of Pharmacopuncture","volume":"25 2","pages":"114-120"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/59/jop-25-2-114.PMC9240411.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacopuncture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3831/KPI.2022.25.2.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives: Antivenom serums have been used extensively for over a century and are the only effective treatment option for snake bites and other dangerous animal envenomations. In therapeutic serum centers, a wide range of antivenoms is made from animal serum, mainly equine and sheep, that are immunized with single or multiple venoms. This work aimed to use caprylic acid (CA) to purify therapeutic snake antivenom.
Methods: Plasma was obtained from equine immunized with a mixture of venoms. Immunized plasma was obtained by precipitation of different concentrations (2-5%) of CA. This methodology was compared to that based on ammonium sulfate (AS) precipitation. Sediment plasma proteins were purified by ion-exchange chromatography. Protein assay, SDS-PAGE, and agar gel diffusion were performed.
Results: The total protein precipitation with AS was higher than precipitation with CA, but the best results were obtained when CA was added to the plasma until a final CA concentration of 5% was reached. Chromatography and electrophoresis indicated a stronger band for the 5% CA, and the gel diffusion assay showed antigen-antibody interaction in the purified serum.
Conclusion: The use of CA compared to the routine method for purifying hyperimmune serums is a practical and cost-effective method for preparing and producing therapeutic serums. It constitutes a potentially valuable technology for alleviating the critical shortage of antivenom in Iran.
期刊介绍:
The Journal of Pharmacopuncture covers a wide range of basic and clinical science research relevant to all aspects of the biotechnology of integrated approaches using both pharmacology and acupuncture therapeutics, including research involving pharmacology, acupuncture studies and pharmacopuncture studies. The subjects are mainly divided into three categories: pharmacology (applied phytomedicine, plant sciences, pharmacology, toxicology, medicinal plants, traditional medicines, herbal medicine, Sasang constitutional medicine, herbal formulae, foods, agricultural technologies, naturopathy, etc.), acupuncture (acupressure, electroacupuncture, laser acupuncture, moxibustion, cupping, etc.), and pharmacopuncture (aqua-acupuncture, meridian pharmacopuncture, eight-principles pharmacopuncture, animal-based pharmacopuncture, mountain ginseng pharmacopuncture, bee venom therapy, needle embedding therapy, implant therapy, etc.). Other categories include chuna treatment, veterinary acupuncture and related animal studies, alternative medicines for treating cancer and cancer-related symptoms, etc. Broader topical coverage on the effects of acupuncture, the medical plants used in traditional and alternative medicine, pharmacological action and other related modalities, such as anthroposophy, homeopathy, ayurveda, bioelectromagnetic therapy, chiropractic, neural therapy and meditation, can be considered to be within the journal’s scope if based on acupoints and meridians. Submissions of original articles, review articles, systematic reviews, case reports, brief reports, opinions, commentaries, medical lectures, letters to the editor, photo-essays, technical notes, and book reviews are encouraged. Providing free access to the full text of all current and archived articles on its website (www.journal.ac), also searchable through a Google Scholar search.