Xiaoen Wang, Cheng Zhang, Michal Sawczyk, Ju Sun, Qinghong Yuan, Fangfang Chen, Tiago C. Mendes, Patrick C. Howlett, Changkui Fu, Yiqing Wang, Xiao Tan, Debra J. Searles, Petr Král, Craig J. Hawker, Andrew K. Whittaker, Maria Forsyth
{"title":"Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes","authors":"Xiaoen Wang, Cheng Zhang, Michal Sawczyk, Ju Sun, Qinghong Yuan, Fangfang Chen, Tiago C. Mendes, Patrick C. Howlett, Changkui Fu, Yiqing Wang, Xiao Tan, Debra J. Searles, Petr Král, Craig J. Hawker, Andrew K. Whittaker, Maria Forsyth","doi":"10.1038/s41563-022-01296-0","DOIUrl":null,"url":null,"abstract":"Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm−2 and 1.0 mAh cm−2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm−2). Rechargeable batteries with sodium metal anodes are promising as energy-storage systems despite safety concerns related to reactivity and dendrite formation. Solvent-free perfluoropolyether-based electrolytes are now reported for safe and stable all-solid-state sodium metal batteries.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 9","pages":"1057-1065"},"PeriodicalIF":38.5000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-022-01296-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 35
Abstract
Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm−2 and 1.0 mAh cm−2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm−2). Rechargeable batteries with sodium metal anodes are promising as energy-storage systems despite safety concerns related to reactivity and dendrite formation. Solvent-free perfluoropolyether-based electrolytes are now reported for safe and stable all-solid-state sodium metal batteries.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.