Kaiping Wang, Yan Wang, Bo Zhan, Yujie Yang, Chen Zu, Xi Wu, Jiliu Zhou, Dong Nie, Luping Zhou
{"title":"An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation.","authors":"Kaiping Wang, Yan Wang, Bo Zhan, Yujie Yang, Chen Zu, Xi Wu, Jiliu Zhou, Dong Nie, Luping Zhou","doi":"10.1142/S0129065722500435","DOIUrl":null,"url":null,"abstract":"<p><p>A practical problem in supervised deep learning for medical image segmentation is the lack of labeled data which is expensive and time-consuming to acquire. In contrast, there is a considerable amount of unlabeled data available in the clinic. To make better use of the unlabeled data and improve the generalization on limited labeled data, in this paper, a novel semi-supervised segmentation method via multi-task curriculum learning is presented. Here, curriculum learning means that when training the network, simpler knowledge is preferentially learned to assist the learning of more difficult knowledge. Concretely, our framework consists of a main segmentation task and two auxiliary tasks, i.e. the feature regression task and target detection task. The two auxiliary tasks predict some relatively simpler image-level attributes and bounding boxes as the pseudo labels for the main segmentation task, enforcing the pixel-level segmentation result to match the distribution of these pseudo labels. In addition, to solve the problem of class imbalance in the images, a bounding-box-based attention (BBA) module is embedded, enabling the segmentation network to concern more about the target region rather than the background. Furthermore, to alleviate the adverse effects caused by the possible deviation of pseudo labels, error tolerance mechanisms are also adopted in the auxiliary tasks, including inequality constraint and bounding-box amplification. Our method is validated on ACDC2017 and PROMISE12 datasets. Experimental results demonstrate that compared with the full supervision method and state-of-the-art semi-supervised methods, our method yields a much better segmentation performance on a small labeled dataset. Code is available at https://github.com/DeepMedLab/MTCL.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 9","pages":"2250043"},"PeriodicalIF":6.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500435","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7
Abstract
A practical problem in supervised deep learning for medical image segmentation is the lack of labeled data which is expensive and time-consuming to acquire. In contrast, there is a considerable amount of unlabeled data available in the clinic. To make better use of the unlabeled data and improve the generalization on limited labeled data, in this paper, a novel semi-supervised segmentation method via multi-task curriculum learning is presented. Here, curriculum learning means that when training the network, simpler knowledge is preferentially learned to assist the learning of more difficult knowledge. Concretely, our framework consists of a main segmentation task and two auxiliary tasks, i.e. the feature regression task and target detection task. The two auxiliary tasks predict some relatively simpler image-level attributes and bounding boxes as the pseudo labels for the main segmentation task, enforcing the pixel-level segmentation result to match the distribution of these pseudo labels. In addition, to solve the problem of class imbalance in the images, a bounding-box-based attention (BBA) module is embedded, enabling the segmentation network to concern more about the target region rather than the background. Furthermore, to alleviate the adverse effects caused by the possible deviation of pseudo labels, error tolerance mechanisms are also adopted in the auxiliary tasks, including inequality constraint and bounding-box amplification. Our method is validated on ACDC2017 and PROMISE12 datasets. Experimental results demonstrate that compared with the full supervision method and state-of-the-art semi-supervised methods, our method yields a much better segmentation performance on a small labeled dataset. Code is available at https://github.com/DeepMedLab/MTCL.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.