Integration of Heterogeneous Biological Data in Multiscale Mechanistic Model Calibration: Application to Lung Adenocarcinoma

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jean-Louis Palgen, Angélique Perrillat-Mercerot, Nicoletta Ceres, Emmanuel Peyronnet, Matthieu Coudron, Eliott Tixier, Ben M. W. Illigens, Jim Bosley, Adèle L’Hostis, Claudio Monteiro
{"title":"Integration of Heterogeneous Biological Data in Multiscale Mechanistic Model Calibration: Application to Lung Adenocarcinoma","authors":"Jean-Louis Palgen,&nbsp;Angélique Perrillat-Mercerot,&nbsp;Nicoletta Ceres,&nbsp;Emmanuel Peyronnet,&nbsp;Matthieu Coudron,&nbsp;Eliott Tixier,&nbsp;Ben M. W. Illigens,&nbsp;Jim Bosley,&nbsp;Adèle L’Hostis,&nbsp;Claudio Monteiro","doi":"10.1007/s10441-022-09445-3","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanistic models are built using knowledge as the primary information source, with well-established biological and physical laws determining the causal relationships within the model. Once the causal structure of the model is determined, parameters must be defined in order to accurately reproduce relevant data. Determining parameters and their values is particularly challenging in the case of models of pathophysiology, for which data for calibration is sparse. Multiple data sources might be required, and data may not be in a uniform or desirable format. We describe a calibration strategy to address the challenges of scarcity and heterogeneity of calibration data. Our strategy focuses on parameters whose initial values cannot be easily derived from the literature, and our goal is to determine the values of these parameters via calibration with constraints set by relevant data. When combined with a covariance matrix adaptation evolution strategy (CMA-ES), this step-by-step approach can be applied to a wide range of biological models. We describe a stepwise, integrative and iterative approach to multiscale mechanistic model calibration, and provide an example of calibrating a pathophysiological lung adenocarcinoma model. Using the approach described here we illustrate the successful calibration of a complex knowledge-based mechanistic model using only the limited heterogeneous datasets publicly available in the literature.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10441-022-09445-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09445-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanistic models are built using knowledge as the primary information source, with well-established biological and physical laws determining the causal relationships within the model. Once the causal structure of the model is determined, parameters must be defined in order to accurately reproduce relevant data. Determining parameters and their values is particularly challenging in the case of models of pathophysiology, for which data for calibration is sparse. Multiple data sources might be required, and data may not be in a uniform or desirable format. We describe a calibration strategy to address the challenges of scarcity and heterogeneity of calibration data. Our strategy focuses on parameters whose initial values cannot be easily derived from the literature, and our goal is to determine the values of these parameters via calibration with constraints set by relevant data. When combined with a covariance matrix adaptation evolution strategy (CMA-ES), this step-by-step approach can be applied to a wide range of biological models. We describe a stepwise, integrative and iterative approach to multiscale mechanistic model calibration, and provide an example of calibrating a pathophysiological lung adenocarcinoma model. Using the approach described here we illustrate the successful calibration of a complex knowledge-based mechanistic model using only the limited heterogeneous datasets publicly available in the literature.

Abstract Image

多尺度机械模型校准中异构生物学数据的整合:在肺腺癌中的应用。
机械模型是用知识作为主要信息源,用完善的生物和物理定律来决定模型内的因果关系。一旦确定了模型的因果结构,就必须定义参数,以便准确地再现相关数据。在病理生理学模型的情况下,确定参数及其值尤其具有挑战性,因为用于校准的数据很少。可能需要多个数据源,并且数据可能不是统一的或理想的格式。我们描述了一种校准策略,以解决校准数据的稀缺性和异质性的挑战。我们的策略侧重于初始值不易从文献中获得的参数,我们的目标是通过相关数据设置的约束进行校准来确定这些参数的值。当与协方差矩阵适应进化策略(CMA-ES)相结合时,这种循序渐进的方法可以应用于广泛的生物模型。我们描述了一种逐步、综合和迭代的多尺度机制模型校准方法,并提供了一个校准病理生理肺腺癌模型的例子。使用这里描述的方法,我们说明了仅使用文献中公开可用的有限异构数据集成功校准复杂的基于知识的机制模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信