Xiumei Jiang, Mary D Boudreau, Peter P Fu, Jun-Jie Yin
{"title":"Applications of electron spin resonance spectroscopy in photoinduced nanomaterial charge separation and reactive oxygen species generation.","authors":"Xiumei Jiang, Mary D Boudreau, Peter P Fu, Jun-Jie Yin","doi":"10.1080/26896583.2021.1971477","DOIUrl":null,"url":null,"abstract":"<p><p>Nano-metals, nano-metal oxides, and carbon-based nanomaterials exhibit superior solar-to-chemical/photo-electron transfer properties and are potential candidates for environmental remediations and energy transfer. Recent research effort focuses on enhancing the efficiency of photoinduced electron-hole separation to improve energy transfer in catalytic reactions. Electron spin resonance (ESR) spectroscopy has been used to monitor the generation of electron/hole and reactive oxygen species (ROS) during nanomaterial-mediated photocatalysis. Using ESR coupled with spin trapping and spin labeling techniques, the underlying photocatalytic mechanism involved in the nanomaterial-mediated photocatalysis was investigated. In this review, we briefly introduced ESR principle and summarized recent advancements using ESR spectroscopy to characterize electron-hole separation and ROS production by different types of nanomaterials.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":"39 4","pages":"435-459"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2021.1971477","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Nano-metals, nano-metal oxides, and carbon-based nanomaterials exhibit superior solar-to-chemical/photo-electron transfer properties and are potential candidates for environmental remediations and energy transfer. Recent research effort focuses on enhancing the efficiency of photoinduced electron-hole separation to improve energy transfer in catalytic reactions. Electron spin resonance (ESR) spectroscopy has been used to monitor the generation of electron/hole and reactive oxygen species (ROS) during nanomaterial-mediated photocatalysis. Using ESR coupled with spin trapping and spin labeling techniques, the underlying photocatalytic mechanism involved in the nanomaterial-mediated photocatalysis was investigated. In this review, we briefly introduced ESR principle and summarized recent advancements using ESR spectroscopy to characterize electron-hole separation and ROS production by different types of nanomaterials.