Metabolism of carcinogenic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides by rat primary hepatocytes generate the same characteristic DHP-DNA adducts.
{"title":"Metabolism of carcinogenic pyrrolizidine alkaloids and pyrrolizidine alkaloid <i>N</i>-oxides by rat primary hepatocytes generate the same characteristic DHP-DNA adducts.","authors":"Xiaobo He, Qingsu Xia, Qiang Shi, Peter P Fu","doi":"10.1080/26896583.2021.1954460","DOIUrl":null,"url":null,"abstract":"<p><p>We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5<i>H</i>-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA <i>N</i>-oxides in rats <i>in vivo</i> and <i>in vitro</i>. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA <i>N</i>-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA <i>N</i>-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":"39 4","pages":"357-372"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2021.1954460","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA N-oxides in rats in vivo and in vitro. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA N-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA N-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.
我们最近建立了一套(±)-6,7-二氢-7-羟基-1-羟甲基- 5h -吡咯利嗪(DHP)-DNA加合物介导的基因毒性机制,导致吡咯利嗪生物碱(PA)诱导的肝脏肿瘤起始。该机制参与了大鼠体内和体外一系列致癌物质PAs和PA n -氧化物的代谢。肝肿瘤效力的强弱顺序与DHP-DNA加合物的形成水平有相关性。因此,这些DHP-DNA加合物可能是PA和PA n -氧化物暴露和肝脏肿瘤起始的潜在生物标志物。为了确定这一机制的普遍性,在本研究中,我们检测了13种潜在致癌PA, 1种非致癌PA和5种PA n-氧化物在雄性大鼠原代肝细胞中的代谢。除无毒PA和对照外,所有处理组均产生相同的DHP-DNA加合物。这些结果支持一般的遗传毒性机制介导的形成特征DHP-DNA加合物导致pa诱导的肝肿瘤起始。