Long noncoding RNA TRG-AS1 protects against glucocorticoid-induced osteoporosis in a rat model by regulating miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis.
{"title":"Long noncoding RNA TRG-AS1 protects against glucocorticoid-induced osteoporosis in a rat model by regulating miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis.","authors":"Wen Liu, Guojuan Li, Jing Li, Wei Chen","doi":"10.1007/s13577-022-00741-1","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term treatment of glucocorticoids is a common cause of osteoporosis (OP). This study concentrated on inquiring into the regulatory role and potential mechanisms of TRG-AS1 on dexamethasone (Dex)-induced OP in rats. We adopted Dex to treat rat osteoblasts and rats to simulate in-vitro and in-vivo OP models, respectively. Gain-of-function assays of TRG-AS1, miR-802 and CAB39 were constructed in rat osteoblasts to make certain the influence of TRG-AS1, miR-802 and CAB39 on differentiation, proliferation and apoptosis of rat osteoblasts. TRG-AS1 and CAB39 were down-regulated in the Dex-induced OP model in rats, in contrast to miR-802. Overexpression of TRG-AS1 restrained Dex-induced inhibition of osteogenic differentiation, promoted CAB39/AMPK/SIRT-1 and inhibited NF-κB, while overexpression of miR-802 bridled the inhibitory effect of TRG-AS1 on OP. miR-802 was targeted by TRG-AS1, and inhibited CAB39. Inhibition of either AMPK or SIRT-1 abated the osteogenic differentiation-promoting effect of CAB39. Animal experiments displayed that overexpressing TRG-AS1 alleviated Dex-induced OP in rats. In conclusion, up-regulation of TRG-AS1 protected against glucocorticoid-induced OP in rats by modulating the miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1424-1439"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00741-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The long-term treatment of glucocorticoids is a common cause of osteoporosis (OP). This study concentrated on inquiring into the regulatory role and potential mechanisms of TRG-AS1 on dexamethasone (Dex)-induced OP in rats. We adopted Dex to treat rat osteoblasts and rats to simulate in-vitro and in-vivo OP models, respectively. Gain-of-function assays of TRG-AS1, miR-802 and CAB39 were constructed in rat osteoblasts to make certain the influence of TRG-AS1, miR-802 and CAB39 on differentiation, proliferation and apoptosis of rat osteoblasts. TRG-AS1 and CAB39 were down-regulated in the Dex-induced OP model in rats, in contrast to miR-802. Overexpression of TRG-AS1 restrained Dex-induced inhibition of osteogenic differentiation, promoted CAB39/AMPK/SIRT-1 and inhibited NF-κB, while overexpression of miR-802 bridled the inhibitory effect of TRG-AS1 on OP. miR-802 was targeted by TRG-AS1, and inhibited CAB39. Inhibition of either AMPK or SIRT-1 abated the osteogenic differentiation-promoting effect of CAB39. Animal experiments displayed that overexpressing TRG-AS1 alleviated Dex-induced OP in rats. In conclusion, up-regulation of TRG-AS1 protected against glucocorticoid-induced OP in rats by modulating the miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.